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Abstract

An Open-Source, extensible spacecraft simulation and modeling (Open-SESSAME) frame-
work was developed with the aim of providing to researchers the ability to quickly test
satellite algorithms while allowing them the ability to view and extend the underlying
code. The software is distributed under the GPL (General Public License) and the pack-
age’s extensibility allows users to implement their own components into the libraries,
investigate new algorithms, or tie in existing software or hardware components for algo-
rithm and flight component testing. This thesis presents the purpose behind the devel-
opment of the framework, the software design architecture and implementation, and a
roadmap of the future for the software package.
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Chapter 1

Introduction

1.1 Overview of Problem

Researchers in the field of spacecraft dynamics and control are concerned with creating

accurate and understandable physical models of satellites. These simulations help to

verify principles of motion and to test control designs for both attitude and orbit control.

Usually a student or researcher performing this modeling and analysis is forced to create

a simulation from the ground-up for each new spacecraft. The alternatives are either

to update and adapt the researcher’s previous simulation software or to use another

engineer’s simulation code. This adaptation can be time consuming, tedious, and prone

to errors that may not be noticed during operations, and as such may invalidate results

obtained from the simulation.

Fortunately, there are numerous freeware and commercial spacecraft simulation packages

available. However, these packages vary in their functionality, usefulness, and flexibility.

Furthermore, they can be expensive and the researcher may be unaware of the internal

operation of the simulation and must rely on the documented verification of the code.

The goal of this research is to develop an Open-Source, Extensible Spacecraft Simulation

And Modeling Environment (Open-SESSAME) framework that can serve as a basis for

satellite modeling and analysis. The entire collection of code provides most of the tools,

libraries, and structure necessary for simulating a wide range of spacecraft while also

allowing easy extension for any further desired functionality. The open-source nature of

the packages means that users are able to investigate the design and operation of the code

to reassure themselves of the validity of the simulator. The Open-SESSAME framework

is also an active project within the large and rapidly growing open-source community.
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This membership allows new functionality to be disseminated to all current and future

users of the framework as it continues to grow and mature.

1.2 Spacecraft Simulators

Spacecraft Simulators are software tools that can be used by researchers, engineers, stu-

dents, or managers to analyze and evaluate satellite operations and to answer questions

regarding a project or product. These simulators are developed either from very special-

ized algorithms for a specific spacecraft (e.g. Earth Observer I), or for a more generalized

class of satellites (i.e. non-rigid, tethered, etc.). There are usually associated tools that

assist with coding operations such as linear algebra libraries, numerical integrators, or

orbit packages. Together, the associated tools and derived algorithms make up the simu-

lator code that is run with specified initial and operating conditions during the required

time frame to analyze a desired characteristic. The pertinent data is then displayed

through either graphical or text-based programs to give useful information to the user.

There are numerous spacecraft simulator packages that perform a wide-range of functions

that are useful to satellite engineers and scientists. Such functionality includes orbit

analysis, attitude analysis, formation flying, hardware-in-the-loop testing, or controller

verification. For example, one could analyze the orbit of a spacecraft about a central

body over long time periods to evaluate its ground track, calculate access to ground

stations, and determe the visibility of other celestial bodies.

Commercial packages are available that have been thoroughly verified and generally ac-

cepted by the satellite community. The degree of functionality varies greatly between the

packages, from simple two-body propagation of a point mass, to full three-dimensional

simulations of constellations of satellites communicating with air and ground based as-

sets. Within this array of packages, there are specialized applications that may appeal

to different aspects of spacecraft modeling, including power or communications.

1.3 Rationale

Many students and researchers of satellite dynamics and control must independently

develop software simulations each time a new research project begins. These simulations

are typically built for the research task at hand and are not easily adaptable to future

projects. Furthermore, many students have little experience developing simulations, or

may not know where to begin, where to focus, and how to best implement components
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so they can be resuable between projects and for other students and engineers. The

Open-SESSAME framework addresses these issues by providing a common groundwork

upon which students can learn how simulators are implemented and develop their own

components for use in the framework for their own research.

The Space Systems Simulation Laboratory (SSSL) at Virginia Tech in Blacksburg, Vir-

ginia is working on a number of projects that work to develop new methodologies for

the simulation and analysis of spacecraft and their associated systems.1 These projects

include both hardware and software simulation techniques used in tandem to better un-

derstand the interplay of satellite dynamics with novel control and sensing strategies. As

a result of the unique requirements of many of the projects, a single commercial soft-

ware package has not yet fulfilled the needs of the lab. An open-source and extensible

simulation framework creates a reusable basis for future simulation projects while also

allowing the students and researchers to configure the simulation to their unique spec-

ifications. Furthermore, users are able to interface the simulation software with other

analysis packages that may be required for their research.

1.4 Scope and Method of Development

This thesis aims to provide the reader with an overview of the physics, equations, and

algorithms involved in spacecraft analysis and modeling, while leading them into the

design aspects of bringing these principles together into a usable software framework. An

introduction to object-oriented design strategies and their application to the framework

layout is given. Most importantly, the reader will be introduced to, and learn, the internal

operations of the framework, the interactions between components, and methods of using

the framework for research projects. A treatment of the verification and validation is

presented to reassure the reader of the accuracy of the current simulation framework

and how to maintain this accuracy while implementing new algorithms. Finally, the

goal of this thesis is to give the reader the ability to begin using the framework while

understanding its underlying operation and design.

1.5 Outline of Thesis

The rest of this thesis document is organized as follows. Chapter 2 covers the develop-

ment of spacecraft simulation software packages as well as a brief introduction to object-

1http://www.aoe.vt.edu/research/groups/sssl/
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oriented programming. Chapters 3 and 4 give in-depth discussions of attitude and orbit

dynamic equations that form the basis of the Open-SESSAME framework tools and li-

braries. Numerical methods of integration, interpolation, and calculation are covered

in Chapter 5. Chapter 6 introduces the framework software design, operation and use.

Chapter 7 discusses verification and validation efforts that demonstrate the accuracy

of the simulation and methods to ensure that accuracy is maintained, as well as why

the framework fulfills its design requirements. Finally, Chapter 9 covers the conclusions

reached in developing this framework and suggests features that could be implemented

by users of Open-SESSAME.



5

Chapter 2

Background

This chapter discusses the work preceding the development of the Open-SESSAME frame-

work. Its purpose is to provide the context for the development of such a framework. A

brief introduction to simulation research is presented followed by a survey of previous and

current spacecraft simulation packages that are available and how the Open-SESSAME

framework fits within this group. Finally, a brief introduction to Object-Oriented Design

is covered to help in understanding the methodologies used in the design and implemen-

tation of the Open-SESSAME framework.

2.1 Prior Work in Simulation

There is a large body of research that is concerned with the development of simulation

concepts and methods. The most applicable history dates back to the mid-1960’s as

computers became prevalent and better analysis and modeling software was developed.

In 1979, Cellier developed a numerically sound methodology for simulating hybrid con-

tinuous and discrete time models using digital computers [1]. Following this work, there

were various efforts to implement simulation specific programming languages such as Dy-

mola [2, 3], Desire [4], and Mathwork’s Simulink [5]. Dymola and Desire were specialized

solutions that do not find wide use in the industry today. Simulink (and by association

MatLab) are widely used as analysis and modeling tools for engineering research.

Cubert and Fishwick [6] developed MOOSE (Multimodeling Object-Oriented Simulation

Environment), which focused on developing a framework for modeling multiple body

objects and, more importantly, creating a basis for sharing models through the MOOSE

Model Repository (MMR). The design allowed development of models in any number of
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programming languages. These models could then be shared over the internet. MOOSE is

one of the first significant efforts in creating a shared development of simulation materials

that can be quickly and readily disseminated to users.

MOOSE provides the common interface to which these models from the MMR were

attached and simulated. There was reuse in the interface of MOOSE as well as in the

development of the models, as any model could be built up from smaller models. This

building of complex models from simple models follows one of Booch’s [7] principles of a

complex system: “A complex system that works is invariably found to have evolved from

a simpler system that works .... A complex system designed from scratch never works

and cannot be patched up to make work.”

Another important aspect of MOOSE was the ability to distribute the processing and

operation of the simulation. Using a model similar to CORBA (Common Object Request

Broker Architecture), components were either local or distributed, which did not alter

the operation of the simulation. This premise was also greatly assisted by the advent

of the internet and the new ease of interconnectedness between remote computers and

facilities.

The future of simulation software is focused on distributed computing and employing

the power of the internet to share data, models, and computing power. Object-oriented

design is just one paradigm that has been leveraged to develop powerful applications that

are usable and maintainable by users. As the user base grows, so does the power of the

application and the ability to reuse code in developing newer software with more power

in less time [8].

2.2 Prior Work in Spacecraft Simulation

There are numerous implementations of spacecraft simulation packages; most applications

are proprietary or are not maintained. However, a handful of software codes are currently

available as options to spacecraft engineers. These can be broadly grouped into two

categories: free-of-cost/freeware and commercial packages.

2.2.1 Freeware Packages

WinOrbit is a Microsoft Windows freeware application that was developed in Visual Ba-

sic by Carl Gregory at the University of Illinois in Urbana-Champaign. WinOrbit can

graphically display satellite positions in real-time. The software can also generate track-
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ing data and ephemerides information for a number of Earth-based satellites. WinOrbit

appears to have stopped development in 1998 and the code is not open-source [9].

SaVi (short for Satellite Visualization) is an open-source satellite constellation visualiza-

tion that is being hosted on the Sourceforge repository1[10], which promotes development

amongst worldwide programmers. SaVi is being developed by Lloyd Wood, a student at

the University of Surrey, UK. It has been used for a variety of applications in networking

among satellites in a constellation [11, 12, 13].

Another open-source toolkit is ORSA: Orbit Reconstruction, Simulation and Analysis.[14].

The software is still under development by students at Padova University in Italy and

does not currently have many of its features implemented. The primary goal is the sim-

ulation and analysis of celestial bodies, but because ORSA is open-source, the software

could be used as a basis for a broader space simulation package.

NASA Jet Propulsion Laboratory (JPL) engineers have been developing several space-

craft simulation tools that form the Autonomy Testbed Environment (ATBE) which is

built on LIBSIM and DARTS / DSHELL (DARTS Shell) [15]. The ATBE was created to

test and verify autonomous spacecraft flight software on the ground. DSHELL is a library

of C++ simulation routines that provides the basic framework to develop such packages

as the ATBE and other spacecraft simulators. DARTS is a flexible multi-body dynamics

computational engine, which also includes libraries of hardware models. DARTS is in-

terfaced through DSHELL. Furthermore, DSHELL is portable from desktop systems to

hardware-in-the-loop environments [16].

DARTS/DSHELL has been used for several NASA JPL projects such as Cassini, Galileo,

Mars Pathfinder, and Stardust [15]. LIBSIM was used by the New Millenium Project’s

Deep Space 1. The software package is available free-of-charge to qualifying academic

institutions.

Princeton Satellite Systems (PSS) has developed MultiSatSim (MSS), which can simulate

up to 8 satellites as well as control them from a remote computer [17]. Unlike most other

satellite simulation tools, MSS is not restricted to modeling systems orbiting about Earth.

While the gravity model and control can be customized, the simulation only models a

rigid body using the quaternion kinematic representation. Furthermore, MSS is not

open-source, and binaries are only available for Apple brand computers.

1http://sourceforge.net/projects/savi
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Table 2.1: Summary of spacecraft simulation software libraries and applications.
Package Manufacturer Benefits Negatives

AutoCon NASA Goddard Heritage, Assists mission planning Not maintained, not available

DSHELL NASA JPL Free to academic institutions Not available, new language

Formation Flying

Testbed

NASA Goddard Well supported, ties in with hard-

ware

Expensive, limited availability,

aimed towards formations

FreeFlyer a.i. solutions Scriptable, good user interface, her-

itage, 2D/3D visualization

Expensive, limited integration with

existing software

MultiSatSim Princeton Satel-

lite Systems

Good graphics, easy to use interface,

scriptable

Apple hardware only, limited to 8

satellites, limited expandability

ORSA Open-Source multiple platforms, active develop-

ment

Not complete, limited functionality,

orbits only

Open-SESSAME Open-Source multiple platforms, extensible, well

documented, active development,

orbit and attitude, seperate libraries

No graphical user interface, requires

knowledge of C++ programming

SATCOS SAIC Heritage Orbit and constellations only

SaVi Open-Source Good user interface, in development Only models orbits, made for con-

stellations, single developer

SC Modeler AVM Dynamics - No longer supported

Spacecraft Control

Toolbox

Princeton Satel-

lite Systems

Well developed, documented MatLab only, attitude only

Satellite ToolKit Analytical

Graphics

Easy to use, 2D/3D visualization,

heritage, large number of modules,

good support, external communca-

tions, variety of operating systems

Expensive, not extensible, complex,

proprietary

Swingby Computer

Sciences Corpo-

ration

– Not Available, now exists in STK

Astrogator

WinOrbit Carl Gregory,

Univ. Illinois

Free of cost, graphical user interface Windows only, not extensible, user

interface difficult



2.2 Prior Work in Spacecraft Simulation 9

2.2.2 Commercial Packages

Princeton Satellite Systems (PSS) has also developed the Spacecraft Control Toolbox , a

collection of MatLab scripts that assist in the development and simulation of spacecraft

attitude control systems [18]. The cost of the toolbox is about $1000 for academic users

and upwards of $3000 for the full, commercial license of Spacecraft Control Toolbox.

The first of the surveyed commercial packages, SC Modeler 2 developed by AVM Dynamics

is a collection of software tools for the design, visualization and analysis of satellite

constellations. While the application is primarily used for communication constellations,

it also includes tools for analyzing ground-space operations. SC Modeler is closed-source

and has a high purchase cost.

SATCOS , or the Satellite Constellation Synthesis code, was developed by SAIC to assist

in designing satellite constellations for telephone and Internet communication applica-

tions. First contracted by the U.S. Air Force for the space-based laser defense program,

the software now optimizes global coverage and network constraints of satellite constel-

lations for clients. 3

AutoCon was developed by NASA Goddard Space Flight Center (GSFC) and A.I. So-

lutions as a satellite autonomous maneuver planning software. There are two principal

components, AutoCon-F and AutoCon-G, which are used for in-flight operation and

ground simulation respectively. This sharing of parts enables use of the same code on the

ground and in flight, which reduces complexity and increases reliability. AutoCon was

used on the Landsat-7/EO-1 formation mission to coordinate the tight formation of the

spacecraft orbits. It is currently planned for use on Global Precipitation Measurement

(GPM) constellation [19, 20]

FreeFlyer is another Windows based application [21] developed by a.i. solutions. Features

include both limited orbit and attitude simulation, a highly customizable environment,

and external scripting for control and operations. While the application has extensive

functionality, the user interface is difficult to navigate, which hinders the usefulness of

some operations.

Another formation simulation software package currently in development at NASA GSFC

is the Formation Flying TestBed (FFTB). It too is meant for a real-time modeling sys-

tem for providing simulated positions of formations of spacecraft. It is implemented in

MatLab with extensions for external hardware interfacing [22].

Satellite ToolKit (STK) is a commercial package developed by Analytical Graphics Inc.

2http://www.avmdynamics.com/index1.htm
3http://www.saic.com/cover-archive/space/satcos.html
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(AGI)4 and includes numerous modules that include communications, visualization, cov-

erage, and a complex orbit analysis tool, Astrogator. It is a comprehensive suite that

is quickly gaining acceptance in the aerospace industry and has been used for several

high visibility missions such as MAP, NEAR[23], Sirius Satellite Radio, Loral’s Glob-

alStar, and Hughes AsiaSat3 satellite rescue [24, 25]. STK provides a Graphical User

Interface (GUI) through which users perform simulation tasks or network programs for

communication between remote machines.

Two shortcomings of STK are its high cost (up to $10,000 per module) and its closed

source. While the basic STK program is free of charge, the modules are expensive.

Although there are educational discounts offered to institutions, the add-on modules

are not readily available to interested researchers and students, especially for students

who are not part of an established research group, or engineers who cannot afford the

cost. Furthermore, the program is produced as a commercial product and must maintain

simulation accuracy and speed. However, closed-source software prevents student and

engineers from understanding STK’s internal operation and using the developed tools

for specific tailored applications. STK does provide a basis for a good satellite modeling

program, and interaction with it for further analysis is recommended if possible.

The Swingby program was developed in 1989 at Computer Sciences Corporation (CSC)

for NASA GSFC. In January 1994, Swingby was used operationally for the Clementine

mission. Later that same year, CSC worked with AGI to enhance this program and

commercially sell it as a product called Navigator [26].

Swingby continued to be used operationally for the WIND launch in 1994 and the SOHO

launch in 1995. In early 1997 at the request of GSFC, Analytical Graphics Inc. began

the conversion of Swingby into a new product, Astrogator , with a prototype delivered

in late 1997. Following its release, it was used to plan the lunar gravity swingby which

rescued Hughes’ AsiaSat3 from a useless orbit. In March 1998, GSFC began beta testing

Astrogator and in January 1999 they began using it for MAP mission analysis. Astrogator

was brought to the commercial market in November 1999.5

Table 2.1 gives an overview of the previously discussed software packages. The reader is

encouraged to learn more about these applications and how they work. Certain packages

offer benefits over others, and individual users may have different operating requirements.

This survey of available spacecraft simulation packages may not be complete; however

it does offer a understanding of the current open-source, free-of-charge, and commercial

software options for satellite engineers. The Open-SESSAME framework, as mentioned

4http://www.stk.com
5http://www.stk.com/resources/download/astrogator/about astrogator.cfm
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previously, is released under an open-source license. The next section presents some of the

concepts of object-oriented design which make open-source software easier to understand

and reuse in new applications.

2.3 Object-Oriented Design

Object-Oriented Design (OOD) is a relatively recent design approach to developing soft-

ware. Its primary purpose is to model digital data and algorithms using real-world

analogies. Objects, which are defined by classes , are encapsulations of data and methods

that affect or are affected by that associated data.

Objects can be conceptualized in a manner similar to real world objects, or things. A car

is an object that has data associated with it, such as the number of wheels and doors,

mileage, color, and size. A car also has operations that can be performed, like start, stop,

go, turn left, turn right, or paint. Data is usually hidden (not directly accessible) from the

user but accessed using operations. We can change the internal representation without

affecting how the user interfaces with the object by encapsulating the data within a class.

To illustrate OOD with an example, assume there is a Car class which stores the speed

of the car in “Miles Per Hour” (MPH). There is an operation, GetSpeedMPH(), much like

a function, we can call that returns the speed in miles per hour. However, requirements

are changed to state that the speed should internally be stored as Kilometers Per Hour

(KPH). The class operation GetSpeedMPH() is internally changed to convert the internal

mileage from KPH to MPH. A user of the Car class does not need to know about this

internal change, since the user still calls GetSpeedMPH(), which returns the speed of the

car in MPH.

The practice of programming using OOD is called Object-Oriented Programming (OOP).

The purpose is to design the classes in such a way as to make a simple, usable inter-

face while preventing the users from being affected by eventual changes to the internal

operations of the class. Furthermore, OOP helps design software that is extendable.

Object-oriented designs lend themselves to hotspots, or extension points where new pro-

grammers can add new functionality to existing software with a minimal of effort and

reusing as much software as possible.

The Open-SESSAME framework makes extensive use of object-oriented paradigms to

assist in the code’s understandability and reusability. It is imperative that the user

understand basic software programming principles, and preferably more advanced design

practices. For a full introduction and discussion of Object-Oriented Programming and
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other design paradigms refer to Cohoon and Davidson[27] or Stroustrup [28].

2.4 Summary

This chapter presented an in-depth coverage of past and current spacecraft simulation

codes, as well as some general simulation research as it applies to object-oriented simu-

lation. These codes range from open-source and beginning development to full-fledged

commercial software applications used by major corporations for high-visibility spacecraft

missions. None of them, however, currently fill the need for an open-source, extensible

spacecraft simulation and modeling environment framework that can also be used for

hardware-in-the-loop testing. Lastly, a brief overview of object-oriented programming

was given to familiarize the reader with the general concepts. The next chapters discuss

the technical details of the physics that are the basis of the software framework.
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Chapter 3

Attitude Dynamics

Attitude is used to describe the orientation of one reference frame to another reference

frame, such as a spacecraft body-fixed frame with respect to an Earth-fixed frame. To

fully describe an attitude, a set of reference frames and the methods for representing the

orientation of these frames with respect to one another are defined. The kinematics and

dynamics of these frame rotations are also defined. This chapter also discusses the various

environmental disturbance torques, as well as internal and control torques. Lastly, the

methods of analytically and numerically calculating attitude dynamics are presented.

3.1 Reference Frames

A reference frame is a set of three orthogonal vectors in space that are used to describe

a set of coordinates. To define a frame, one of the vector directions must be specified,

a preferred, or desired, direction for a second vector is chosen, and the third direction

is determined by right-handed orthogonality. There are numerous reference frames to

be used when describing spacecraft attitude. These frames can be highly dependent

on the mission scenario, operating characteristics, or project standards. Most attitude

simulations and analyses are done with respect to spacecraft-fixed coordinates (origin

moving with the spacecraft), but may include non-spacecraft reference frames for further

analysis. The following subsections define frequently used examples of attitude frames.
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3.1.1 Inertial Frame

An inertial frame is a non-rotating reference frame in fixed space. A common represen-

tation is Earth-Centered Inertial (ECI) frame which is illustrated in Figure 3.1. The x̂i

direction points from the center of the Earth to the vernal equinox, Υ, the ẑi direction

is in the Earth’s orbital angular velocity direction, and ŷi completes the orthonormal

triad to x̂i and ẑi. However, inertial frames can be defined with respect to any celestial

body or arbitrary point in space. The inertial frame is used as a reference to describe an

attitude that is independent of spatial position or mission operation.

x̂i

ŷi

ẑi

x̂o

ŷo
ẑo

Υ

Fo

Fi

Figure 3.1: Illustration of the orbital, Fo, and inertial, Fi, reference frames in an orbit about a
central body.

3.1.2 Orbital Frame

The orbital frame is a non-inertial, rotating frame that moves with a body in orbit. As

illustrated in Figure 3.1, the origin is fixed at the spacecraft’s mass center with the ẑo

axis in the direction from the spacecraft to the Earth (nadir direction). The ŷo axis is

the direction opposite to the orbit normal, and x̂o completes the orthonormal triad to

ẑo and ŷo. Note that this frame is non-inertial because of orbital acceleration and the

rotation of the reference frame. The orbital reference frame can used as a reference for

relating a spacecraft’s attitude relative to the local orbit horizon (shaded area in Figure

3.1).
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3.1.3 Body Frame

A body frame is a set of axes that has a fixed origin at a point in, or on, the space-

craft. The axes are then permanently described within the spacecraft as specified by the

spacecraft engineers. Body frames are useful for relating objects on a spacecraft relative

to one another, or for defining how a spacecraft is oriented with respect to an external

frame (such as the orbital or inertial frames).

3.1.4 Principal Axes

Sometimes it is helpful in modeling spacecraft dynamics to describe the system in the

principal axes frame. This frame is a specific body-fixed reference frame with the axes

aligned such that the moment of inertia matrix is diagonal. These moments of inertia

are then called the principal moments of inertia.

3.2 Kinematics

Kinematics describes the orientation, or rotation, of one reference frame to another. The

following are common ways of defining a rotation: Euler Axis and Angle, Euler Angles,

Direction Cosine Matrix, Modified Rodriguez Parameters and Quaternions.

3.2.1 Euler Axis and Angle

The simplest description relating the orientation of two reference frames is that of the

unit principal axis, or Euler axis, ê, and angle, Φ. The axis is a single vector about which

the first frame can rotate through the angle to align with the second frame as shown in

Figure 3.2. The axis can be represented as the principal rotation vector, γ:

γ = Φê (3.1)

This equation is the formulation of Euler’s theorem. As is discussed below, ê is the

eigenaxis, or eigenvector associated with the eigenvalue of 1 from the transformation

matrix corresponding to the rotation.
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ŷ

ẑ

x̂

x̂′

ŷ′ẑ′

Φ

!e

Figure 3.2: Rotation about an Euler axis, ê, of the euler angle, Φ that transforms F to F ′.

3.2.2 Euler Angles

Another way of describing the orientation of two axes with respect to one another is by

a sequence of angular rotations about the individual x, y, and z axes. The rotations

described are those necessary to reorient axis sytem 1 with axis system 2. For example,

the description of a rotation from the Earth Centered Inertial frame to the perifocal

frame requires a rotation about the z-axis by the longitude of the ascending node, Ω,

then a rotation about the new x-axis by the inclination, i, and finally a rotation about

the new z-axis of the argument of perigee, ω. This set of transformations is described as

a “3-1-3” rotation, which describes the order of the rotations.

There is an infinite number of rotation sequences that can be used to describe coordinate

frame transformations. For most transformations, 3 rotations are sufficient, which results

in 12 possible successive rotation combinations. However, specific transformations may

require more or fewer successive rotations. Another important aspect to consider is

that the transformation from one reference frame to another is non-unique. There may

be several rotation sequences that achieve a transformation. With Euler angles there

are singularities for each of the 12 combinations of three rotations. These singularities

make the representation inconvenient for simulation. However, Euler angles are useful
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for visualization because a human can more easily perceive three rotations about axes

than by using a mathematical transformation construct.

3.2.3 Direction Cosine Matrix

A simple way to describe and represent transformation is by the use of a Direction Cosine

Matrix (DCM). A DCM is a 3 × 3 matrix of values, a rotation matrix, that represents

the transformation of a vector from one coordinate frame to another:

vb = Rbava (3.2)

where va and vb are the components of v̂ vector in Fa (Frame a) and Fb, respectively,

Rba is the DCM describing the rotation from Fa to Fb.

The direction cosine matrix is constructed by the angles between the frame axes:

Rba =

cos θxbxa cos θxbya cos θxbza

cos θybxa cos θybya cos θybza

cos θzbxa cos θzbya cos θzbza

 (3.3)

where cos θxbxa is the cosine of the angle between the x axis of the first frame and the x

axis of the second frame.

For determining successive rotations (say from Fa to Fb to Fc), we can combine the

rotation matrices by multiplying them together:

Rca = RcbRba (3.4)

When creating the rotation matrix using Euler angles, it is possible to combine the

principal rotations. These rotations are the individual rotations through an angle θ

about one of the primary axes. The principal rotations are as follows:

R1(θ) =

1 0 0

0 cos θ sin θ

0 − sin θ cos θ

 (3.5)

R2 (θ) =

cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 (3.6)

R3 (θ) =

 cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 (3.7)
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Therefore, using the principal rotations, the “3-1-3” sequence described before could be

determined as follows:

Rpi = R3(ω)R1(i)R3(Ω) (3.8)

where Rpi is the rotation from the inertial frame to the perifocal coordinate system.

3.2.4 Quaternions

The 4-element quaternion set, q̄ exhibits no singularities. The quaternion, q̄ = [qT , q4]
T ,

can be determined from the Euler-axis parameters set (ê, Φ) as follows:

q = ê sin
Φ

2
(3.9)

q4 = cos
Φ

2
(3.10)

The quaternion representation vector has unit length, which is a useful characteristic.

Therefore, the quaternion can be normalized during computations to maintain accuracy,

q̄new = q̄
|q̄| . Also, because the quaternion is not a unique transformation, the negative,

q̄ = −q̄, is an equivalent rotation.

3.2.5 Modified Rodriguez Parameters

Another method of specifying a rigid body attitude is through the use of Modified Ro-

driguez Parameters (MRP). The 3-element set is defined by using the 4-elements of the

Euler axis and angle as follows:

σ = ê tan
Φ

4
(3.11)

Like the quaternions, the MRP is not a unique representation to the transformation, but

also has a shadow set, σS:

σS = − 1

|σ|2
σ (3.12)

The shadow set should nominally be evaluated whenever |σ| > 1 since the shadow set

will be a shorter rotational distance back to the original frame. However, this threshold

can be whatever the user may desire to prevent unnecessary switching in the case where

the dynamics remain close to |σ| > 1.
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3.2.6 Conversions

Kinematic and dynamic equations can be formulated in different transformation repre-

sentations, and sometimes it is necessary to change representations for singularities or

visualization. Therefore, conversion algorithms are defined to allow the user the ability to

switch between transformation representations. The following sections include common

conversions between the described kinematic representations.

Quaternion to MRP

The conversion from quaternion to Modified Rodriguez Parameters ([q1, q2, q3, q4]
T =

[σ1, σ2, σ3]
T ):

σi =
qi

1 + q4

for i=1,2,3 (3.13)

When q4 = −1, there is a singularity. Therefore, the equivalent quaternion should be

used (q̄ = −q̄).

MRP to Quaternion

The conversion from Modified Rodriguez Parameters to quaternion is:

q̄ =


2σ1

2σ2

2σ3

1− σ2
1 − σ2

2 − σ2
3

(1 + σ2
)

(3.14)

Euler Axis to DCM

The conversion from Euler Axis and Angle to Direction Cosine Matrix is:

R = êêT (1− cos Φ)− ê× sin Φ + 1 cos Φ (3.15)

=

 e2
1Σ + cos Φ e1e2Σ + e3 sin Φ e1e3Σ− e2 sin Φ

e2e1Σ− e3 sin Φ e2
2Σ + cos Φ e2e3Σ + e1 sin Φ

e3e1Σ + e2 sin Φ e3e2Σ− e1 sin Φ e2
3Σ + cos Φ

 (3.16)

where Σ = 1− cos Φ. It is also necessary to define the skew-symmetric operation, which

represents the vector component version of a cross-product:

v× =

 0 −v3 v2

v3 0 −v1

−v2 v1 0

 (3.17)

This matrix has the property (v×)
T

= −v×.
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DCM to Euler Axis and Angle

The conversion from Direction Cosine Matrix to Euler axis and angle is:

Φ = cos−1

(
trace(R)− 1

2

)
(3.18)

ê =
1

2 sin Φ

(
RT −R

)
(3.19)

=
1

2 sin Φ

R23 −R32

R31 −R13

R12 −R21

 (3.20)

Φ = 0 when R = 1, and therefore the rotations are aligned. The Euler axis is undefined

and can be any unit vector. There is also a singularity when Φ = π.

Quaternion to DCM

The conversion from quaternion to Direction Cosine Matrix is:

R (q̄) =
(
q4 − qTq

)
1 + 2qqT − 2q4q

× (3.21)

=

1− 2(q2
2 + q2

3) 2 (q1q2 + q4q3) 2 (q1q3 − q4q2)

2 (q1q2 − q4q3) 1− 2(q2
1 + q2

3) 2 (q2q3 + q4q1)

2 (q1q3 + q4q2) 2 (q2q3 − q4q1) 1− 2(q2
1 + q2

2)

 (3.22)

DCM to Quaternion

The conversion from Direction Cosine Matrix to quaternion is:

q4 = ±1

2

√
1 + trace(R) (3.23)

q =
1

4q4

R23 −R32

R31 −R13

R12 −R21

 (3.24)

However, if q4 = 0, then q = ê.

MRP to DCM
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The conversion from Modified Rodriguez Parameters to Direction Cosine Matrix is:

R(σ) =
1

(1 + σTσ)2
[
(1− (σTσ)2)1 + 2σσT − 2(1− (σTσ)2)σ×

]
(3.25)

=
1

(1 + σ2)2 (3.26)4 (σ2
1 − σ2

2 − σ2
3) + Σ2 8σ1σ2 + 4σ3Σ 8σ1σ3 − 4σ2Σ

8σ2σ1 − 4σ3Σ 4 (−σ2
1 + σ2

2 − σ2
3) + Σ2 8σ2σ3 + 4σ1Σ

8σ3σ1 + 4σ2Σ 8σ3σ2 − 4σ1Σ 4 (−σ2
1 − σ2

2 + σ2
3) + Σ2


where Σ = 1− σ2, and σ2 = σTσ.

DCM to MRP

The conversion from Direction Cosine Matrix to Modified Rodriguez Parameters is:

σ =
1

4Γ(1 + Γ)

R23 −R32

R31 −R13

R12 −R21

 (3.27)

where Γ = ±1
2

√
1 + trace(R), which is equivalent to q4.

3.3 Attitude Dynamics

Attitude dynamics are the time-variation of the spacecraft attitude with respect to an-

other reference frame due to external forces and torques. In this section, we develop the

dynamic equations describing the motion of a rigid and non-rigid body in an environment

subject to external disturbances. We first develop the simple rigid body dynamics before

deriving the full non-rigid flexible dynamic equations.

3.3.1 Equations of Motion

The rotation of a rigid body is described by the kinematic equations of motion and the

kinetic equations of motion. As discussed above, the kinematics specifically model the

current attitude of the body with respect to time. The dynamics are characterized by

the absolute angular velocity vector, ω.
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3.3.2 Kinematic Equations of Motion

Each attitude representation discussed above has a set of equations that describe its time

rate of change due to the dynamics of the rigid body.

Quaternion Kinematic Equations of Motion

The propagation of the kinematics is defined as:

˙̄q = Q (q̄) ω (3.28)

=
1

2

[
q× + q41

−qT

]
ω (3.29)

Modified Rodriguez Parameters Kinematic Equations of Motion

The MRP kinematics are defined to propagate the rigid body attitude:

σ̇ = F(σ)ω (3.30)

where

F(σ) =
1

2

(
1− σ× + σσT − 1 + σT σ

2
1

)
(3.31)

Euler Angle Kinematic Equations of Motion

Sometimes it is useful or required to directly integrate the Euler angles and deal with

the possibility of singularities. Table 3.1 presents the 12 possible kinematic equations,

one for each type of Euler angle sequence. The kinematic equation is summarized as:

θ̇ = S−1(θ)ω (3.32)

3.3.3 Dynamic Equations of Motion

Euler’s Law defines the formulation of the angular momentum of a body in an inertial

frame:
~̇h = g̃ (3.33)
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Table 3.1: Summary of Euler kinematic equations for various successive rotations.

Axis Sequence Kinematic Equation, S−1

1-2-3, 2-3-1, 3-1-2

 cos θ3 sec θ2 − sin θ3 sec θ2 0

sin θ3 cos θ3 0

− cos θ3 tan θ2 sin θ3 tan θ2 1


1-3-2, 3-2-1, 2-1-3

cos θ3 sec θ2 sin θ3 sec θ2 0

− sin θ3 cos θ3 0

cos θ3 tan θ2 sin θ3 tan θ2 1


1-2-1, 2-3-2, 3-1-3

0 sin θ3 sec θ2 cos θ3 csc θ2

0 cos θ3 − sin θ3

1 − sin θ3 cot θ2 − cos θ3 cot θ2


1-3-1, 3-2-3, 2-1-2

0 sin θ3 sec θ2 − cos θ3 csc θ2

0 cos θ3 sin θ3

1 − sin θ3 cot θ2 cos θ3 cot θ2


Source:From Hughes [29]

where ~h is the angular momentum vector referenced to teh center of mass and ~g is the

applied torque. The differential equations for the angular velocity in the body frame are

derived from Euler’s equation:

Iω̇ = g − ω × Iω (3.34)

where I is the spacecraft moment of inertia matrix, ω is the body angular velocity, and

g are the spacecraft torques.

To propagate the dynamics in the rotating reference frame, a relation between the body-

inertial, ωbi, and body-orbital, ωbo, angular velocities is required:

ωbi = ωbo + ωoi = ωbo − ωco2 (3.35)

therefore,

ω̇bi = ω̇bo − ωcȯ2 − ω̇co2 (3.36)

= ω̇bo + ωcω
bo×o2 − ω̇co2 (3.37)

where ωc is the orbital angular velocity, and o2 is the second column of the body-orbital

rotation matrix Rbo as defined in Equation 3.21. This derivation leads to the equation

of the angular velocity in body-orbital coordinates:

ω̇bo = I−1
[
g −

(
ωbo − ωoi

)
× I

(
ωbo − ωoi

)]
− ωcω

bo×o2 + ω̇co2 (3.38)
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3.4 Disturbance Torques

The equations of motion above were derived assuming generalized torques. In a perfect

environment, these torques would be limited to applied control torques. However, a real-

world spacecraft is subject to many other disturbance torques from the environment.

These torques can include aerodynamic, magnetic dipole, or gravity-gradient torques.

The following sections introduce and describe some of these disturbance torques and

simple models for determining their effects on the attitude dynamics.

3.4.1 Aerodynamic

Most simulations model satellites in orbits about a central body with an atmosphere.

The atmosphere creates disturbance torques and forces the same way it would for an

aerodynamic body, but with less density due to the relatively high altitude of satellite

operations.

The change in momentum of onrushing air particles imparts a force on visible sections of

the spacecraft. Therefore, the spacecraft’s cross-section distribution with respect to the

relative atmospheric velocity vector must be calculated. Also, as the satellite’s altitude

decreases, the force due to the atmosphere increases because the density increases. Below

400 km the aerodynamic torque is the dominant environmental disturbance torque [30].

3.4.2 Magnetic

Spacecraft structures are typically constructed out of magnetic materials and contain

numerous amounts of electronic wiring. These materials and wiring carrying electrical

current produce ambient magnetic fields within and around the spacecraft. All of the

magnetic fields interact with a central body’s magnetic field much the way a compass

behaves on the Earth. The local fields attempt to align themselves, applying a torque

about the body center:
~Tmag = ~m× ~B (3.39)

where ~m is the spacecraft’s magnetic moment due to eddy currents, hysteresis, perma-

ment and induced magnetism, or electronical current loops, and ~B is the central body’s

magnetic flux density at the spacecraft’s location [30].

The magnetic disturbance can also be useful for applying active control using magnetic

torquers [31].
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3.4.3 Gravity Gradient

The spacecraft body is subject to a non-uniform gravity field which can cause external

torques about the body center of mass. This non-uniformity is due to the inverse-square

relation of the force field and the distance from the mass center, as well as a non-spherical,

non-homogenous central body (such as the Earth, but especially true for asteroid or

irregularly shaped central bodies).

The gravity gradient torque about the body principal axes is:

Tgg = 3ω2
co3

×Io3 (3.40)

where o3 is the third column of the body-orbital rotation matrix and ωc is the orbit

angular velocity of the spacecraft. The orbit angular velocity can be calculated by using

the gravitational parameter, µ, and the semi-major axis, a.

ωc =

√
µ

a3
(3.41)

For enhanced accuracy, a better model would include a higher order gravity field that is

dependent on the spacecraft’s position and the central body’s orientation. Furthermore,

it is useful to analyze the spacecraft’s moment of inertia matrix to evaluate its stability

due to the gravity gradient disturbance torque.

3.4.4 Solar Radiation

Spacecraft are not nominally spherical, perfect bodies, but are instead a collection of

flat or curved surfaces of different coloring and material. This mismatch of surfaces can

create disturbance torques due to the unbalanced applied force from light particles from

the sun, reflection from the central body or other nearby bodies, or radiation emitted

by the central body and its atmosphere. This radiation pressure is equal to the vector

difference between the incident and reflected momentum flux [30].

3.4.5 Other Disturbance Torques

There are many other disturbance torques that could be included for a more accurate

attitude dynamics model. The modeler should be aware of the satellite’s operating con-

ditions and understand the pertinent disturbances to include in the model, as well as the

inconsequential terms that can be neglected.
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Some examples include micrometeorites, propulsion torques, propellant slosh, crew mo-

tion, or moving hardware (booms, optics, sensors).

The effects of the environmental torque disturbances discussed above are illustrated in

Figure 3.3. This figure demonstrates when certain disturbances should be modeled, and

when they are negligible.

Figure 3.3: Relative effects of various example environmental disturbance torques. (From
Hughes [29], adapted by Makovec[31]) It is important to know the appropriate effects to model
during a simulation. Including relatively small effects add unnecessary computation time. Ne-
glecting to include relatively large disturbances can cause the simulation results to be inaccurate.
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3.5 Attitude Control

The requirements for most satellite missions specify a desired attitude with respect to

some reference frame, such as earth-pointing, sun-pointing, spin-stabilized, or pointing

thrusters for orbital maneuvering. Therefore, a torque needs to be applied to attain the

desired attitude from the current attitude, which requires the development of suitable

control algorithms for determining the requisite torque. This torque is then applied to

the spacecraft for a calculated time, and then the required torque is calculated again

depending on the current attitude.

There are many different methods for determining the required torque, and these methods

usually must consider the method of control (momentum wheels, thrusters, torque rods,

etc.). Satellite attitude control is an active area of research. For simulation purposes the

end result is a set of torques being applied about the body axes. These torques are then

accounted for in the dynamics equations to modify the spacecraft’s attitude.

3.6 Attitude Propagation

In order to simulate a spacecraft’s operation, its attitude must be propagated forward

through time. Propagation requires evaluating the dynamic equations at each time step

and integrating through the simulation time.

There are two primary methods of evaluating and integrating the equations of motion:

dynamic modeling and gyro modeling. Dynamic modeling integrates both the kinematic

and dynamic equations, while gyro modeling uses rate sensors or gyroscopes to provide

the dynamics information and integrates only the kinematics equations. For both of

these methods of propagation, any and all degrees of freedom must be included in the

integrated state vector (e.g. momentum wheels, angular momentum, non-rigidity).

Choosing the kinematics representation to be propagated requires consideration. Many

simulations use the quaternion equations of motion (Equation 3.28) due to its lack of

troublesome singularities, but the Modified Rodriguez Parameters (Equation 3.30) are

also an adequate choice.

The rest of the state vector is chosen as required by the simulation. If rate information

is being supplied by sensors, then gyro modeling can be used, and only the kinematics

must be integrated.
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3.6.1 Methods

Chapter 5 discusses suitable techniques for integrating the equations of motion. Un-

like most orbit propagation simulations, attitude simulations occur on a much smaller

timescale and usually with tighter constraints. Therefore, an appropriate integration

timestep or error tolerance must be chosen to ensure accurate modeling [32].

The closed-form approximations of the equations of motion can be used to assist in

verifying the modeling solution. The simple case is that of an axisymmetric body, where

two of the principal moments of inertia are equal, say IT = I1 = I2, and with no externally

applied torques. Euler’s equations (Equation 3.34) simplify to:

ω̇1 =
IT − I3

IT

ω2ω3 (3.42)

ω̇2 =
I3 − IT

IT

ω1ω3 (3.43)

ω̇3 = 0 (3.44)

hence ω3 is constant. This system of differential equations can be solved by differentiating

the first with respect to t, multiplying by IT , and substituting into the second equation

to give:

ω̈1 = −
(

IT − I3

IT

)2

ω1ω
2
3 (3.45)

⇒ ω1 = ωT cos ωp(t− t1) (3.46)

where ωT =
√

ω2
1 + ω2

2 and is the maximum value of ω1. The variable t1 is the time at

which ω1 first reaches ωT and ωp is the body nutation rate:

ωp =

(
1− I3

IT

)
ω3 (3.47)

These equations can be summarized as follows:

ω1 = ω01 cos ωpt + ω02 sin ωpt (3.48)

ω2 = ω02 cos ωpt− ω01 sin ωpt (3.49)

ω3 = ω03 (3.50)

where ω01, ω02, ω03 are the components of the initial angular velocity vector ω0.

This closed-form solution can be used to verify a numerically integrated solution to verify

the operation of the simulation. It is also useful to derive the closed-form solutions to
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the equations with time-varying torque, g = g(t) and assuming g3 = 0 [29]:

ω1 = ω01 cos ωpt + ω02 sin ωpt (3.51)

+
1

IT

∫ t

0

[g1(τ) cos (ωp(t− τ)) + g2(τ) sin (ωp(t− τ))]dτ

ω2 = −ω01 sin ωpt + ω02 cos ωpt (3.52)

+
1

IT

∫ t

0

[−g1(τ) sin (ωp(t− τ)) + g2(τ) cos (ωp(t− τ))]dτ

ω3 = ω03 (3.53)

Therefore, to calculate the angular velocities at a future point in time, the equations

above can be integrated using the known control input, initial conditions, and body

parameters.

More in-depth derivations can produce the closed-form solutions of the asymmetric,

torque-free case using Jacobi elliptic functions [30].

3.6.2 Coupling with Orbit Maneuvers

Most of the torque disturbances become dependent on the spacecraft position as the

fidelity of the environment model is increased. For instance, it is required to know

the position to calculate the local magnetic field. Orbital position is also required to

determine if the spacecraft is in eclipse and the solar radiation pressure should or should

not be applied. For these reasons, attitude and orbit propagation should occur in tandem.

It is useful to also discuss how to model the attitude and orbit dynamics equations since

they are typically on very different timescales. It would be computationally wasteful to

integrate the orbit dynamics on the same small timescale as the attitude. Therefore, as is

discussed in the next chapter, it is more useful to integrate the orbit at larger timescales

and interpolate between these integration mesh points to evaluate the environmental

torque disturbances that are dependent on position [33].

3.7 Summary

This chapter discussed the main points of interest for modeling and simulating attitude

dynamics. It presented the important concepts of attitude reference frames and corre-

sponding kinematics, as well as the dynamic equations of motion. An introduction to

environmental disturbance torques was shown, as well as resources for a more in-depth
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coverage. The principles covered in this chapter form the basis for the spacecraft simu-

lation framework’s attitude toolkit, while also allowing the user to add refined models as

required.
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Chapter 4

Orbit Dynamics

This chapter covers spacecraft orbital dynamics. This survey of orbital dynamics pro-

vides an understanding of the principles behind the spacecraft simulation framework

acting as a springboard for developing better models. First, time frames and conversions

are presented followed by an in-depth coverage of spatial coordinate systems and state

representations. Next, the equations of motion and the pertubations to the ideal orbits

are developed using several different models. Finally, propagation methods are discussed.

4.1 Time

Normally, time is considered a trivial issue and measured with a clock, maybe a precise

one, but with little extra consideration. When someone specifies a time, such as “11:30PM

on September 13, 1998” they are defining an epoch, an instant in time, in mean solar

time. There are, however, many problems associated with the measurement of time based

on the choice reference object, the accumulation of leap seconds, or the rotation of the

reference frame. The differences between these time frames may be small, but because

space objects move with such a high velocity, these small time differences can account for

large differences in position. Therefore, it is necessary to define and relate the different

time frames that are used in astrodynamics.
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4.1.1 Time Frames

Solar Time

Solar Time, measured from a nominal longitude line, is the time required for an observer

on Earth at the meridian to revolve once and observe the sun at the same location. Green-

wich Mean Time (GMT) is therefore the measurement of solar time from the Greenwich

meridian at 0◦ longitude.

The means of describing these observations and movements is through the use of hour

angles . An hour angle is the elapsed time since the object was overhead of the observers

longitude. It is important to note that the definition of the hour angle is left-handed ,

and therefore it is measured positive westward. The two common measurements are the

Greenwich Hour Angle (GHA) and the Local Hour Angle (LHA), and can be measured

in hours or degrees, as long as they are consistent.

The Earth’s orbit, however, does have a small eccentricity and Earth has an inclination

with respect to its orbital plane which causes the length of each day to vary by a small

amount. Apparent solar time is simply defined as

local apparent solar time = LHAJ + 12 h (4.1)

and

Greenwich apparent solar time = GHAJ − αJ + 12 h (4.2)

which are defined for the Earth-Sun system, and αJ is the right ascension of the Sun as

measured positive to the east in the equator’s plane from the vernal equinox direction.

To help correct for the known errors in assuming to rotation or changes in orbit, the U.S.

Naval Observatory has defined Mean solar time, and is based upon Greenwich Sidereal

Time (GST), which is discussed in the next Section.

Sidereal Time

Sidereal Time is similar to solar time. However, sidereal time uses a defined set of objects

(e.g. stars) that are outside our solar system at a much greater distance than the Sun,

and therefore, the objects have less change over the course of a year.

The set of axes that the observations are taken from must be specified to formally define

sidereal time. The rotation axis is through the north pole of Earth (or the central body)

and is positive counter-clockwise. The time is then measured from a specified longitude
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line to the reference axis, which for sidereal time is the vernal equinox. Similar to solar

time, the sidereal time measured at the 0◦ longitude line is Greenwich Sidereal Time,

θGST . The sidereal time at any defined longitude line is Local Sidereal Time, θLST . To

convert between the two sidereal times, a simple equation is required:

θLST = θGST + λ (4.3)

where λ is the specified longitude to measure as local, and is positive for east longitudes

and negative for west longitudes.

Another important consideration is that the reference, the vernal equinox, is defined as

the intersection of the Earth’s equator with the orbit ecliptic, both of which are moving.

Therefore, an even more detailed distinction must be made. Mean Sidereal Time is

defined by the mean motion of the equinox with only secular terms (time varying terms,

such as precession), while Apparent Sidereal Time is defined by both the secular and

periodic terms of the motion.

Universal Time

Universal Time (UT) is defined as the mean solar time at the Greenwich meridian. There

are inherent errors in the measure of unversal time due to inaccuracies in the measurement

of the sun’s motion. Therefore, a different method is used that measures the locations

of radio galaxies with higher precision to determine the solar time. This time reference

is known as UT0 and is observed at a particular Earth location:

UT0 = 12 h + GHAJ = 12 h + LHAJ − λ (4.4)

where λ is the longitude of the observer.

More precise modifications account for polar motion of Earth (or the central body) and

is used to calculate UT1:

UT1 = UT0− (xp sin (λ) + yp cos (λ)) tan (φgc) (4.5)

where φgc is the geocentric latitude of the observing location, and xp and yp are coefficients

of the instantaneous positions of the central body’s pole.

Finally, there is UT2, a highly accurate Universal Time measurement that accounts for

seasonal variations. This time is used for very accurate orbit determination and modeling

such as spacecraft that have precise requirements for observation or formation flying.

However, this time reference is beyond the current scope and is not discussed further

here.
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Coordinated Universal Time

Atomic Time (AT) is the measurement of time based on the specific quantum transitions

of electrons in a cesium-133 atom. The transition causes photons of a known frequency

to be emitted and can be counted. AT forms the basis of the coordinated universal time,

UTC which follows UT1 within ±0.9 s and is calculated:

UTC = UT1− δUT1 (4.6)

where δUT1 is a correction that includes leap seconds that are added by the U.S. Naval

Observatory every couple of years to account for variations in the Earth’s rotation.1

Julian Date

The Julian date is a measure of time that combines the date and time into a succinct

representation. It is the amount of time, in days, since the epoch of January 1, 4713 B.C.

at 12:00. A Julian period is 7980 Julian years, which are each 365.25 days. The epoch

was determined from the combination of three calendars that were combined to form the

Julian date that all shared the common year 4713 B.C [34].

To calculate the Julian Date within the time perdiod March 1, 1900 to February 28,

2100:

Julian Date = 367(year)− floor

(
7
[
year + floor

(
month+9

12

)]
4

)

+floor

(
275month

9

)
+ day + 1, 721, 013.5 (4.7)

+

( seconds
60

+minute)
60

+ hour

24

where the floor function is truncation (floor (4.587) = 4) and the year (all four digits),

month, day, hour, minute, seconds are the known date and time to be converted. Fur-

thermore, it is important to specify the time used to calculate the Julian Date: JDUT1.

Dynamic Time

Many of the time representations discussed still do not take into account many variations

of the Earth and the respective frames such as variable rotation and relativistic effects.

Therefore, a set of dynamic times were developed based on more stable references.

1http://tycho.usno.navy.mil/gps datafiles.html
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Terrestrial dynamical time, TDT, is independent of equations of motion and derived

directly from the International Atomic Time, TAI:

UTC = UT1− δUT1 (4.8)

TAI = UTC + δAT (4.9)

TDT = TAI + 32.184s (4.10)

where δUT1 and δAT are accumulated measurements of time corrections for the given

time frame that are published by the US Naval Observatory and other references.

Barycentric dynamical time, TDB, is measured from the solar system’s barycenter and

depends on dynamical theory which includes relativistic effecs. The full relation is as

follows:

TTDB = TTDT + 0.001 658 sin M⊕ + 0.000 013 85 sin 2M⊕ (4.11)

+lunar/planetary terms + daily terms

M⊕ ≈ 357.527 723 3◦ + 35, 999.050 34TTDB (4.12)

4.1.2 Time Conversions

Apparent and Mean Solar Time

The difference between the apparent and mean solar time is defined as the equation of

time. This correction comes about because of the difference between the true Sun’s right

ascension and the mean motion fictitious Sun’s right ascension:

EQtime = −1.914 666 471◦ sin (M�)− 0.019 994 643 sin (2M�) (4.13)

+2.466 sin (λecliptic)− 0.0053 sin (4λecliptic) (4.14)

where M� is the mean anomaly of the Sun.

Solar Time and Sidereal Time

There is a difference in the measurement of solar time versus sidereal time since one

sidereal day is 24 sidereal hours where:

1 solar day = 1.002 737 909 350 795 sidereal day (4.15)

1 sidereal day = 0.997 269 566 329 084 solar day (4.16)
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However, to introduce the motion of the equinox and the variation of the relation due to

this motion, we must define a new equation:

1 solar day = 1.002 737 909 350 795 + 5.9006× 10−11TUT1 (4.17)

−5.9× 10−15T 2
UT1 sidereal day (4.18)

where TUT1 is the number of Julian centures (UT1) since the J2000 epoch [34].

Julian Date and Universal Time

Because several time conversions measure the Julian Date from a certain epoch, it is

necessary to calculate a relation between the Julian Date and a particular type of time,

in this case the year 2000:

Txxx =
JDxxx − 2, 451, 545.0

36, 525
(4.19)

The time definitions are necessary to specify observations and satellite states with high

precision due to the high velocities of spacecraft. The choice of time representation varies

depending on the application and information accessible. The following sections present

the orbit states that describe a spacecraft at an instant in time.

4.2 Orbital State

The orbital state is the description of the current trajectory of the spacecraft relative to a

defined reference frame or coordinate system. The following sections define the standard

units and representations, as well as a brief overview of some of the more commonly used

coordinate systems.

4.2.1 Canonical Units

Since the specific values of various astronomical parameters vary due to small pertu-

bations as well as improvements in our ability to accurately measure them, there can

be some confusion as to the “correct value” of a fundamental quantity. One means of

addressing this issue is to use Canonical Units . These units are normalized quantities

of astronomical values based upon the representation of a value, rather than the value

itself. For example, the distance between the earth and the sun can be one “distance

unit” and the mass of the sun as one “mass unit.”
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An specific example may help illustrate the point. Define the radius of a hypothetical

reference orbit that is circular about the earth (denoted by the subscripted astrological

symbol, ⊕) to be 1DU⊕ and the time unit, 1TU⊕ such that the velocity of the satellite in

the reference frame is 1DU⊕/TU⊕. The gravitational parameter is then µ = 1DU3
⊕/TU2

⊕
and does not have to change with increasingly better measurement techniques.

4.2.2 Coordinate Systems

Table 4.1 presents some common orbit reference frames as well as their definitions of the

primary axes directions. It is meant as a general overview of available frames but is not

a complete listing of all possible orbit frames.

4.2.3 State Representations

At least six elements must be included to fully define a three-dimensional trajectory.

However, depending on the application and algorithms involved, there are many repre-

sentations that can define a state using six elements.

Position and Velocity

The most common representation of the orbital state is through position and velocity

vectors:

~r = xı̂ + y̂ + zk̂

r = [r1, r2, r3]
T

~v = ~̇r = ẋı̂ + ẏ̂ + żk̂

v = ṙ = [v1, v2, v3]
T

where the components are the vector component values in some specific reference frame.

As mentioned in Section 3.2.3, to transform from the representation of a specific vector

in one frame to teh same vector represented in another frame, one must define rotation

matrices that can be used to calculate the new components.
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Table 4.1: Common orbit reference frames and their definitions.
System Symbol Origin Fundamental

Plane

Principal

Direction

Example

Use

Interplanetary Systems

Heliocentric XYZ Sun Ecliptic Vernal

equinox

Patched conic

Solar system XBYBZB Barycenter Invariable

plane

Vernal

equinox

Planetary

motion

Earth-based Systems

Geocentric ECi Earth Earth equator Vernal

equinox

General

Earth-Moon ISJSKS Barycenter Invariable

plane

Earth Restricted

three-body

Earth-

Centered

Earth-Fixed

ECEF Earth Earth Equa-

tor

Local merid-

ian

Observations

Topocentric

Horizon

SEZ Site Local horizon South Radar obser-

vations

Topocentric

Equitorial

ItJtKt Site Parallel to

Earth equator

Vernal

equinox

Optical ob-

servations

Satellite- or Orbit-based Systems

Perifocal PQW Earth Satellite orbit Periapsis Processing

Satellite

radial

RSW Satellite Satellite orbit Radial vector Relative

motion,

Pertubations

Satellite Nor-

mal

NTW Satellite Satellite orbit Normal to ve-

locity vector

Pertubations

Equinoctial EQW Satellite Satellite orbit Calculated

vector

Pertubations

Roll-Pitch-

Yaw

RPY Satellite Satellite orbit Radial vector Attitude ma-

neuvers

Source:From Vallado [34, pg. 46]
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Another important point arises when relating an inertial reference frame to a rotating

reference frame:

~rinertial = Rir~rrot (4.20)

~vinertial = ~vrot + ~ωri ×~rrot + ~vorigin (4.21)

~ainertial = ~arot + ~̇ωri ×~rrot + ~ωri ×
(
~ωri ×~rrot

)
(4.22)

+2~ωri × ~vrot + ~aorigin

where ~ωri is the angular rate of the rotating reference frame with respect to the inertial

system, Rir is the transformation matrix from the rotating to inertial frame, and ~vorigin

and ~aorigin are the velocity and acceleration of the rotating reference frame’s origin with

respect to the inertial frame.

Reference Frame Transformations

When using the position and velocity vectors in component form, care must be taken to

ensure the vectors are being represented in the same frame. If this is not the case, or if

the vectors are required in a different frame, then they must be transformed to the new

frame using a transformation:

rb = Rbara (4.23)

where Rba can be successive rotations, e.g. Rba = R3 (θ1) R1 (θ2) R2 (θ3).

Table 4.2.3 provides a summation of standard reference frame transformations.

The symbol θLST is the angle at local standard time (measured from the vernal equinox).

The geodetic latitude is φgd and fr is a retrograde factor, which is +1 when 0◦ ≤ i ≤ 90◦

or -1 when 90◦ < i ≤ 180◦. The orbital parameters i, ω, Ω, and u are discussed in the

next section.

Classical Orbital Elements

The classical orbital elements, or Keplerian elements, consist of the standard 6 values

associated with an orbit: semimajor axis (a), eccentricity (e), inclination (i), longitude

of the ascending node (Ω), argument of perigee (ω), and the parameter true anomaly (ν),

which can be used in place of a measure of time. These values are shown in figure 4.1.
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Table 4.2: Common orbit frame coordinate transformations.
Coordinate Transformation Successive Rotations

SEZ → IJK R3(−θLST )R2(−(90◦ − φgd))

IJK → SEZ R2(90
◦ − φgd)R3(θLST )

PQW → IJK R3(−Ω)R1(−i)R3(−ω)

IJK → PQW R3(ω)R1(i)R3(Ω)

PQW → RSW R3(ν)

RSW → PQW R3(−ν)

EQW → IJK R3(Ω)R1(i)R3(−frΩ)

IJK → EQW R3(−frΩ)R1(−i)R3(Ω)

RSW → IJK R3(−Ω)R1(−i)R3(−u)

NTW → IJK R3(−Ω)R1(−i)R3(−u)R3(−φfpa)

PQW → SEZ R2(90
◦ − φgd)R3(θLST )R3(−Ω)R1(−i)R3(−ω)

RSW → RPY R2(π)

Figure 4.1: Keplerian orbital elements in the Earth-Center Earth-Fixed frame. From Bate,
Mueller, and White[35, pg. 59]
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The semimajor axis, a, is the distance from the center of an ellipse to the farthest end of

the ellipse, defined by the intersection with the line that passes through both foci. The

semimajor axis can be determined from the energy of the orbit, or by using the geometric

relation of half the length of the entire ellipse:

a =

(
2

r
− v2

µ

)−1

=
ra + rp

2
. (4.24)

The gravitational parameter, µ, is used to simplify the equation. As is discussed later,

µ = GM , where G is the gravitational constant, and M is the mass of the central body.

Conversely, the radii of apoapsis and periapsis can be determined from the semimajor

axis, and eccentricity, e. The radius, r, of a spacecraft’s position from the central body’s

center of mass is:

r =
a(1− e2)

1 + e cos ν
(4.25)

This equation can be used to formulate the radii at the closest and farthest points, since

the tru anomaly, nu, is 0 at periapsis (closest), and π radians at apoapsis (farthest):

rp =
a (1− e2)

1 + e
= a (1− e) (4.26)

ra =
a (1− e2)

1− e
= a (1 + e) (4.27)

Here ra and rp are the radii of apoapsis and periapsis respectively.

The eccentricity, e, defines the shape of the orbit ellipse. Eccentricity is equal to the

proportion of the distance from the center of the orbit to a focus on the semimajor axis,

a. For example, e = 0 for a circular orbit since the distance from the center of the circle

to a focus is 0. Eccentricity can be calculated using position and velocity:

~e =
(
v2 − µ

r

)
~r− (~r · ~v) ~v (4.28)

And therefore the eccentricity is e = |~e.

The inclination, i, is defined as the tilt of the orbital plane with respect to the central

body’s equatorial plane. It is measured by the angle between the unit vector, k̂ of the

reference frame and the angular momentum vector, ~h, of the orbit:

cos i =
k̂ · ~h∣∣∣k̂∣∣∣ ∣∣∣~h∣∣∣ (4.29)
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and can range between 0◦ and 180◦, where 0◦ and 180◦ are equatorial orbits, inclinations

of 0◦ to 90◦ are prograde, or direct, orbits, and 90◦ to 180◦ are retrograde orbits since

they are orbiting in the opposite direction of the spin direction of the central body.

The longitude of the ascending node, Ω, is the angle in the equatorial plane measured

positively from the î unit vector of the inertial reference frame (ECI) to the location of

the orbit’s ascending node, where the ascending node is the point on the equatorial plane

that the satellite crosses from the southern hemisphere into the northern hemisphere.

The line connecting the ascending node and the point at which the satellite crosses the

equator going from north to south, or descending node, is the line of nodes, which is

defined by the following:

~n = k̂ × ~h (4.30)

From equation 4.30, one can calculate the longitude of the ascending node:

cos Ω =
ı̂ · ~n
|̂ı| |~n|

(4.31)

if (nj < 0) then Ω = 360◦ − Ω (4.32)

To determine whether Ω is within the correct quadrant, one inspects the sign of the

j-component of ~n. If it is negative then Ω lies in Quadrant III-IV. In the case of an

equatorial orbit, Ω is undefined.

The argument of periapsis, ω, is the angle between the ascending node and the point of

periapsis, where the satellite is at the closest approach to the central body:

cos ω =
~n · ~e
|~n| |~e|

(4.33)

if (ek < 0) then ω = 360◦ − ω (4.34)

The argument of periapsis is undefined for a circular orbit, since there is no periapsis.

The true anomaly, ν, is the angle between periapsis and the satellite’s current position

in the orbit:

cos ν =
~e ·~r
|~e| |~r|

(4.35)

if (~r · ~v < 0) then ν = 360◦ − ν (4.36)

If the orbit is circular, the true anomaly is undefined. See Section 4.3.3 for alternate

representations to true anomaly.
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Special Cases

A few special cases arise in the case of circular, and/or equatorial orbits. For the case of

an elliptic, uninclined orbit, the true longitude of periapsis, ω̃true, is used:

cos ω̃true =
ı̂ · ~e
|̂ı| |~e|

(4.37)

if (ej < 0) then ω̃true = 360◦ − ω̃true (4.38)

Another special case is a circular inclined orbit. There is no periapsis from which to mea-

sure the argument of periapsis in a circular orbit. Subsequently the argument of latitude,

u, is used and is measured between the ascending node and the satellite’s position:

cos u =
~n ·~r
|~n| |~r|

(4.39)

if (rk < 0) then u = 360◦ − u (4.40)

The last special orbit case is that of circular equatorial orbits. These orbits use the true

longitude, λtrue, which is the angle measured from the ı-axis to the satellite’s position:

cos λtrue =
ı̂ ·~r
|̂ı| |~r|

(4.41)

if (rj < 0) then λtrue = 360◦ − λtrue (4.42)

Orbital Elements to Position and Velocity

It is useful to have a conversion from orbital elements to position and velocity vectors.

Defining some orbital parameters if they are undefined due to the special cases mentioned

above is also necessary. The following rules are used:

1. If circular equatorial, set(ω,Ω) = 0 and ν = λtrue,

2. If circular inclined, set ω = 0 and ν = u, and

3. If elliptical equatorial, set Ω = 0 and ω = ω̃true.

Then the conversions to the vectors in perifocal coordinates can be evaluated:

rp =

 p cos ν
1+e cos ν

p sin ν
1+e cos ν

0

 (4.43)

vp =

 −µ
p

sin ν
µ
p
(e + cos ν)

0

 (4.44)

where p = a (1− e2) and is known as the semi-latus rectum.
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Equinoctial Elements

Another set of orbital parameters, based closely on the classical orbit elements, are the

equinoctial elements. These parameters are attractive since they are not prone to the

special geometry cases (i.e. singularities) mentioned such as for circular and equatorial

orbits.

ke = e cos (ω + frΩ)

he = e sin (ω + frΩ)

a semi-major axis (4.45)

λM = M + ω + frΩ

pe = tan fr
i

2
sin Ω

qe = tan fr
i

2
cos Ω

where fr is a retrograde factor and is +1 for prograde orbits, and -1 for retrograde orbits.

2-line Element Sets

Since the satellite orbital elements are widely used and must be stored, it is necessary to

define a common syntax to compile and transmit the parameters. Historically, computers

and communications were limited in computing power and bandwidth, and therefore a

compact representation was developed called “2-line Element Sets” or TLE. Refer to

Celestrak for more information and current TLEs for satellites. 2

4.3 Equations of Motion

The equations of motion used in modern orbital dynamics are based on Newton’s Laws

of Motion. Newton’s second law, “The rate of change of momentum is proportional to

the force impressed and is in the same direction.” [35] is expressed as follows:∑
F = mr̈ (4.46)

where
∑

F is the vector sum of all the forces acting on a mass m, and r̈ is the vector

acceleration of the mass measured relative to an inertial reference frame. These forces

2http://celestrak.com/NORAD/elements/
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are the summation of an infinite number of external disturbances, foremost the gravity

of the central body but also the solar-radiation pressure, atmospheric drag, and so on.

The following sections derive the basic equations that are typically used to develop the

full equations of motion.

4.3.1 Two-Body Equation

Newton also formulated the simplified two-body equation, or Law of Universal Gravita-

tion. This formulation is a simplified model because it only accounts for two bodies, the

central body and the spacecraft. In general it can be applied to any two massive bodies

that have a gravitational attraction with the following assumptions:

1. The bodies are spherically symmetric;

2. There are no external or internal forces acting on the system other than the gravi-

tational forces that act along the line joining the centers of the two bodies.

M

m

!r

ẑ

ŷ
x̂

satellite

central body

Figure 4.2: Two body gravity diagram.

Newton’s Law of Universal Gravitation states that the force of gravity between two

bodies as shown in Figure 4.2 is proportional to the product of their masses and inversely

proprtional to the square of the distance between them:

Fg = −GMm

r2

r

r
(4.47)
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where Fg is the force of gravity acting on mass M and m, and the vector between the two

masses is ~r = ~rM − ~rm. The parameter G is the universal gravitational contant, which

is usually measured by observing the quantity Gm⊕ since the mass of the earth is large

and more easily measured. This gravitational parameter, µ = Gm⊕, has a modern (most

recent, accurate) value of 3.986 004 415× 105km3/s2 for Earth.

Based on equations 4.46 and 4.47, the following equations:

M r̈M =
GMm

r2

r

r
(4.48)

mr̈m = −GMm

r2

r

r
(4.49)

(note the lack of minus sign on the equation for M due to the directions of ~r) can be

combined to derive:

r̈ = −G (M + m)

r3
r (4.50)

A common assumption for simulating satellites orbiting central bodies is that the mass

of the central body (M) is much larger than the mass of the satellite (m) and therefore,

G (M + m) ≈ GM . The gravitation parameter µ, simplifies the equations of motion to:

r̈ +
µ

r3
r = 0 (4.51)

4.3.2 N-body Equations

As mentioned previously, Equation 4.51 is for motion between only two bodies. However,

there are multiple bodies that affect gravity on the modeled satellite. The two-body

assumption is incorrect, and to fully model the dynamics of a body in space, all of the

force effects must be accounted. For a system of n bodies, each of which has an inverse

gravitational field, is defined. Consider the system of masses m1, m2, m3...mn where we

are determining the force on mass mi. We use Equation 4.47 to calculate the force of

gravity, Fg, from one mass, mj, on the observed mass, mi:

Fg = −Gmimj

r3
ji

rji (4.52)

where

rji = ri − rj (4.53)
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Therefore, as determined by Newton’s Second Law, the force of all the masses on the

observed mass, mi, is:

Fg = −Gmi

n∑
j = 1

j 6= i

mj

r3
ji

rji (4.54)

4.3.3 Kepler’s Equation and Problem

A different formulation of orbit equations can be derived using the geometry of the

orbit (be it circular, elliptical, parabolic, or hyperbolic). This was first approached by

Johannes Kepler to predict the motion of planets and the moon. Kepler’s equation is

used to determine the relation of time and angular displacement in an orbit. It introduces

the idea of the mean anomaly, M , which corresponds to the uniform angular motion on

a circle:

M = E − e sin E =

√
µ

a3
(t− tp) (4.55)

where E is the eccentric anomaly, tp is the time of periapsis passage (closest approach

to the central body), and t is the time of flight. Equation 4.55 can be simplified by

calculating the mean motion, n, which is the mean angular rate of the orbital motion:

n =

√
µ

a3
(4.56)

⇒ M = n (t− tp) (4.57)

It is useful to determine a general form of Kepler’s equation:

M −M0

n
= t− t0 (4.58)

=

√
a3

µ
[2πk + E − e sin E − (E0 − e sin E0)] (4.59)

sin E =

√
1− e2 sin ν

1 + e cos ν
(4.60)

cos E =
e + cos ν

1 + e cos ν
(4.61)

However, to calculate the eccentric anomaly, given t − t0, an iterative process is re-

quired. There are several methods for finding the solution, such as Newton-Raphson,
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that approximate the solution by using a root-finding iterative process until a desired

convergence tolerance is reached. To perform the iterations, we must derive the formula

for the iteration and the subsequent equations with appropriate derivatives.

We define an approximation of the function, f(x), as:

f(x) = Pn(x) + Rn(x) (4.62)

where Pn is the function approximation, and Rn is the remainding error of the approx-

imation. By using a Taylor’s series expansion, the approximation function is defined

as:

Pn(x) = f(x0) + f ′(x0)δ +
f“(x0)δ

2

2!
+ ... +

f (n)(x0)δ
n

n!
(4.63)

define δ = x− x0 ≈ −
f(x0)

f ′(x0)
(4.64)

Using only the first order term of the expansion, we define an iterative algorithm to

calculate the term, xn, and apply it to finding the eccentric anomaly:

xn+1 = xn + δn = xn −
f(xn)

f ′(xn)
(4.65)

⇒ En+1 = En +
M − En + e sin En

1− e cos En

(4.66)

Equation 4.66 is used for solving Kepler’s equation. In most cases, only several iterations

should be required to converge to an acceptable range. The iterative approximation can

then be used with the following relations to determine the true anomaly or distance to

the satellite:

cos ν =
cos E − e

1− e cos E
(4.67)

r = a (1− e cos E) (4.68)

Kepler’s problem uses the solution to Kepler’s equation to propagate a satellite through

an orbit. The problem solution requires one to first to determine the orbital elements

from the position and velocity vectors as developed in Section 4.2.3. These elements are

used to determine the eccentric anomaly (using eccentricity and true anomaly). Kepler’s

equation (4.55) can be used to determine the original mean anomaly, M0, and the new

mean anomaly can be determined from:

M = M0 + n(t− t0) (4.69)

Thus Kepler’s equation is solved for the new eccentric anomaly that is then converted

back to true anomaly for the orbit, and determine the new position and velocity vectors

(Equations 4.43 and 4.44).
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4.3.4 Constants of Motion

It is useful to know and understand some of the constants of motion for a satellite in

orbit for the 2-body problem. These constants can be used for derivation and verification

of different principles for future applications.

The specific angular momentum is conserved through an orbit:

~h = ~r× ~v = constant (4.70)

The specific mechanical energy is also conserved and is the sum of mechanical energy,

v2/2, and potential energy, −µ/r as shown below:

E =
v2

2
− µ

r
= − µ

2a
(4.71)

4.4 Pertubations

Previously, the equations of motion of a body with idealized forces, such as gravity, with

no other disturbances have been derived and shown. This is not an accurate model of

the actual dynamics of a body in space. To create a more accurate simulation one must

evaluate and include deviations, or pertubations, from the idealized model.

Pertubations come in many forms such as deviations of the gravity model, atmospheric

drag, solar radiation pressure, or controlled thrust. Furthermore, the derivation of the

pertubations can come from an analytical formulation, known as general pertubations,

or through numerical analysis, as in special pertubations.

We will discuss several of these pertubations and their effect on the equations of motion.

This survey is only meant as an introduction to the subject, and the reader is encour-

aged to pursue a more in-depth discussion to develop better pertubation models as is

necessary.[34, 35]

The disturbances’ effects on the dynamics is summed up by Cowell’s Formulation:

~̈r = − µ

r3
~r + ~ap (4.72)

where ~ap is the vector of accelerations due to pertubances.

This formulation for simulations is very convenient since the pertubations can be added

linearly. Our discussion of how the calculation is carried out during simulation is discussed

in Chapter 5.
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4.4.1 Gravity Field of the Central Body

In Equation 4.47 we assumed a uniform gravity field created by a point mass. This

assumption is not accurate, and can lead to gross errors in simulation by not accounting

for variations in the gravity field due to a non-homogenous, or nonsperical central body

about which the satellite is orbiting.

The derivation is not important to the implementation or use of the spacecraft simulation

framework, but it is highly encouraged that the reader understand the underlying physics.

Vallado[34] presents a good derivation, the results of which are shown here.

The components of the nonspherical acceleration (anonspherical = [ai, aj, ak]
T ) in inertial

coordinates (ECI) are:

ai =

1

r

∂U

∂r
− rk

r2
√

r2
i + r2

j

∂U

∂φgc

 ri −
[

1

r2
i + r2

j

∂U

∂λ

]
rj (4.73)

aj =

1

r

∂U

∂r
− rk

r2
√

r2
i + r2

j

∂U

∂φgc

 rj +

[
1

r2
i + r2

j

∂U

∂λ

]
ri (4.74)

ak =
1

r

∂U

∂r
rk +

√
r2
i + r2

j

r2

∂U

∂φgc

(4.75)

where the partial derivatives of the potential function are:

∂U

∂r
= − µ

r2

∞∑
`=2

∑̀
m=0

(
R⊕

r

)`

(` + 1)P`m sin φgc (C`m cos mλ + S`m sin mλ) (4.76)

∂U

∂φgc

=
µ

r

∞∑
`=2

∑̀
m=0

(
R⊕

r

)`

(P`,m+1 sin φgc −m tan (φgc)P`m sin φgc)

× (C`m cos mλ + S`m) (4.77)

∂U

∂λ
=

µ

r

∞∑
`=2

∑̀
m=0

(
R⊕

r

)`

mP`m sin φgc (S`m cos mλ− C`m sin mλ) (4.78)

Calculation of these equations requires the use of the Legendre Functions (P`m), which

can be found in a table in Vallado [34, pg. 491], and the formulation of the gravitational

coefficients (C`m and S`m)[34].

The order of the summations is determined by the desired degree of accuracy of the

model. However, increase accuracy costs more computation time. The user should be
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careful to choose an order of accuracy congruant with the modeling requirements. For

most applications, J 2 pertubations (` = 2) are sufficient; however, more refined models

may use J 4 or J 6 pertubations.

4.4.2 Atmospheric Drag

There is a pertubation force due to the drag of the spacecraft as it moves through the

atmosphere of the central body it is orbiting. The disturbance magnitude varies accord-

ing to the size and drag surface of the satellites, position, wind velocity and direction,

atmospheric density, season, and numerous other factors that may be considered but will

not be addressed here. The effect of drag is to remove energy from the spacecraft’s orbit,

thereby decreasing altitude.

The simplest model calculates the acceleration due to drag based on a computed drag

coefficient, cD, that takes into account the shape and surface of the spacecraft. Nominal

parameters are 1.0 for a sphere, and 2 for normal satellites. The entire term m/cdA is

usually referred to as the ballistic coefficient, BC. A high BC denotes a low drag effect,

and vice versa. Another factor is the cross-sectional area of the spacecraft, and can vary

based on the attitude of the satellite with respect to the velocity direction. The simple

model is formulated as follows:

~adrag = −1

2

cDAD

m
ρv2

rel

~vrel

|~vrel|
(4.79)

~vrel =
d~r

dt
− ~ω⊕ ×~r =

dx
dt

+ ω⊕y
dy
dt

+ ω⊕x
dz
dt

 (4.80)

where ρ is the atmospheric density, m is the mass of the satellite, AD is the projected

cross-sectional area perpendicular to the velocity direction, and ω is the angular velocity

of the central body. A more advanced model may include wind speed variations in the

atmosphere (in inertial reference frame, ECI):

~vrel = ~vECI − ~ω ×~rECI + ~vwind

(4.81)

=

dx
dt

+ ω⊕y + vw (cos α sin δ cos βw + sin α sin βw)
dy
dt

+ ω⊕x + vw (sin α sin δ cos βw + cos α sin βw)
dz
dt

+ vw (cos δ cos βw)


where vw is the wind’s speed, βw is the wind’s azimuth, α is the satellite’s right ascen-

sion, and δ is the declination as measured from Earth-Centered, Earth-Fixed (ECEF)

coordinate frame.
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These atmospheric models can become as complicated as necessary and are effective for

a simulation considering the expected ballistic coefficient, altitude, and mission lifetime.

Refer to Vallado [34], Bate Mueller & White [35] or Battin [36] for a more in-depth

discussion of atmospheric models.

4.4.3 Solar-Radiation Pressure

Another non-conservative disturbance force, like atmospheric drag, is due to the fact

that light photons can impart a force on an absorbing or reflecting body. The force of

these photons is usually very small but can vary largely between eclipse and during solar

storms. The solar-radiation pressure is even the basis for spacecraft propulsion designs

such as solar sails.

The solar pressure, pSR, is the main parameter in determing the force of the solar-

radiation pressure. For Earth pSR has a nominal value of 4.51 × 10−6 N
m2 , where more

precise values can be calculated depending on the time of year and position from the

Sun. The effect of solar-radiation pressure also varies due to the reflectivity, cR, of the

spacecraft, where 0.0 indicates no effect (translucent), 1.0 is a completely absorbing body,

and 2.0 is an absorbing and reflecting body.

The combined force of the solar radiation pressure is found to be:

~aradiation = −pSRcRAS

m

~r�sat

|~r�sat|
(4.82)

where ~r�sat is the distance from the satellite to the sun (or light-emitting body), and AS

is the spacecraft’s exposed area to the sun. This value of area is important for calculating

the disturbance difference as the spacecraft passes from full sunlight, into eclipse, or when

being shadowed by another body (moon or another spacecraft).

Using basic geometry, it can be shown that simple conditions for determining whether a

satellite is in sunlight are [34]:

τmin =
|~rsat|2 −~rsat ·~r�

|~rsat|2 + |~r⊕|2 − 2~rsat ·~r�
(4.83)

=
~rsat ·~rsat −~r�
|~rsat −~r�|2

Sunlight if τmin < 0 or τmin > 1

or |~c (τmin)|2 = (1− τmin) |~rsat|2 + (~rsat ·~r�) τmin ≥ 1.0

where ~rsat is the radius vector from the earth to the the satellite, ~r� is the radius vector
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from the earth to the sun, and ~r⊕ is the radius vector from the earth’s center to the

horizon.

4.4.4 Third-Body Pertubations

In section 4.3.2 we discussed the generalized effect of multiple bodies on the dynamics of

an orbiting spacecraft. The generalized form is acceptable when the seperations between

the bodies are the same order of magnitude; however, as is the case for Earth-based and

other central body based satellites, the distance to the primary central body is much

less than the distance to any other disturbing bodies, such as the sun or the moon.

Therefore, it is necessary to develop equations that rely on the small and sometimes

inaccurate distance difference when talking about the distance from Earth to the sun

and the satellite to the sun. The parameter Bk is the ratio of distance from the central

body to the third body over the distance from the satellite to the third body:

Bk =
r⊕k

rsatk

− 1 (4.84)

~̈r⊕sat = −Gm⊕

r3
⊕sat

~r⊕sat −
n∑

k=1

Gmk

r3
⊕k

(~r⊕k − βk~rsatk) (4.85)

βk = 3Bk + 3B2
k + B3

k with Bk = B(ζk)

where ζk is the angle between the third body and satellite as seen from Earth.

4.4.5 Other Pertubations

The described pertubations are just an introduction to the availability and accuracy of

models that are available for increased simulation accuracy. Some other examples of

disturbances are the force due to thrust, as well as the mass variation over time due to

propellant loss, tides, higher resolution gravity models, or solar-radiation reflection from

other bodies like the moon.

4.5 Propagation

Propagation is concerned with evaluating the position of the satellite through a series

of timesteps using a specified orbital model and pertubations. Propagation is also the
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crux of simulation. There are two main methods of propagating a satellite, analytically,

or numerically. Analytical propagation uses a set of equations to evaluate the discrete

solution of a satellite’s position at a given time. Numerical propagation evaluates the

motion of the satellite over many small timesteps, integrating the solution, to find the

final solution of the satellite’s position after a given time span.

4.5.1 Analytic Propagation

f and g functions

One example of analytic propagation is the use of the f and g functions. These equa-

tions are derived from a preset condition of pertubations and models. The f and g

functions provide a solution that linearly combine the intial position and velocity vectors

to determine the new position and velocity vectors:

~r = f~r0 + g~v0 (4.86)

~v = ḟ~r0 + ġ~v0 (4.87)

The f and g are transformations using the position and velocity components in the orbital

plane to find the position at a future point in time. This method requires solving the

system of differential equations that can be formulated from the above equations. The

system of differential equations is:

f =
xẏ0 − ẋ0y

h
(4.88)

ḟ =
ẋẏ0 − ẋ0ẏ

h
(4.89)

g =
x0y − xy0

h
(4.90)

ġ =
x0ẏ − ẋy0

h
(4.91)

where h = ||~h|| is the angular momentum of the orbit, ~h = ~r× ~v, and ~r and ~v are in the

orbital frame. It is also convenient to verify that the correct functions were derived by

using the relation:

1 = fġ − ḟg (4.92)

The true anomaly, ν, is assumed to be known to demonstrate how to obtain the f and

g functions. The components of the position vector must be determined in perifocal
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coordinates as well as the time derivatives:

x = r cos ν (4.93)

y = r sin ν (4.94)

ẋ = −
√

µ

p
sin ν (4.95)

ẏ =

√
µ

p
(e + cos ν) (4.96)

The components in perifocal coordinates can be used in equation 4.88 to determine the

following functions:

f = 1− r

p
(1− cos δν) (4.97)

g =
rr0 sin δν
√

µp
(4.98)

ḟ =

√
µ

p
tan

(
δν

2

)(
1− cos δν

p
− 1

r
− 1

r0

)
(4.99)

ġ = 1− r0

p
(1− cos δν) (4.100)

These equations can be derived for different element sets or for included pertubations

and control thrust.

4.5.2 Numerical

Numerical propagation uses a numerical solution to the orbit model that is integrated

over sufficiently small time-steps from epoch to the end of the desired simulation time.

The state is defined as the position and velocity vectors. Therefore the time derivative

of the state is defined as the following:

ẋ =

[
ṙ

v̇

]
=

[
v

− µ
r3 r + adisturbance

]
. (4.101)

The disturbance accelerations can be linearly summed:

adistrubance = anonspherical + adrag + a3−body + asolar−radiation (4.102)

Chapter 5 discusses how to numerically integrate this equation and propagate the satellite

through time.
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4.6 Summary

This chapter presented the main aspects of orbital dynamics and modeling. It has served

to introduce the reader to the important topics, their formulation, and suggested to the

reader more in-depth resources for understanding and analysis. The spacecraft simulation

framework is built upon the principles presented here, but due to the nature of the design

the framework allows users to implement more advanced and accurate models as they

require with little to no modification of the underlying program structure.
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Chapter 5

Numerical Methods

Modeling and simulation on a digital computer requires development of numerical meth-

ods that have known accuracies and can increase the speed of operation. This chapter

presents the basic methods of digital representations of numeric values and the conse-

quences to simulation. Following this, an introduction to numeric integrators and as-

sociated interpolators is given. Lastly, a discussion of relevant computation issues are

covered, including rounding error, execution speed, and accuracy.

5.1 Integration

Integration is the calculation of the future state based on the current state and its deriva-

tives. There are both single-step and multi-step integrators; both types of integrators

can be either variable or fixed step-size. Single-step integrators use the state at time t0
and the time derivatives to calculate the state at time future time t0 + h, where h is

the integration step-size. Examples of single-step integrators include Euler’s Method and

Runge-Kutta. Multi-step integrators attempt to predict initial conditions, solve forward

through time, and correct backwards in time. Examples of multi-step integrators include

Adams-Bashforth and Gauss-Jackson.

5.1.1 Euler

The simplest single-step integrator is Euler’s Method, which uses a first-order Taylor

series expansion to calculate the new state. The state is defined by calculating the time
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derivative of the state multiplied by a suitable time-step, added to the initial conditions:

y(t) ∼= y(t0) + ẏ(t0)(t− t0) (5.1)

The state update is very simple to calculate and requires the time derivative of the

state. The derivative is normally available (especially for dynamics equations), but is

not necessarily accurate when calculated digitally. Analysis is required to determine an

adequate time-step, δt = t− t0, of the state update.

5.1.2 Runge-Kutta

A more advanced single-step integrator is the Runge-Kutta integrator. It operates by

evaluating the time derivative of the equations at several different time-steps over the

integrated interval and combines these derivatives to form a more accurate estimate of

the new state. The fourth-order Runge-Kutta integrator is based on of a fourth-order

Taylor series and is formulated as follows:

ẏ1 = f (t0, y0)

ẏ2 = f

(
t0 +

h

2
, y0 +

h

2
ẏ1

)
ẏ3 = f

(
t0 +

h

2
, y0 +

h

2
ẏ2

)
(5.2)

ẏ4 = f (t0 + h, y0 + hẏ3)

y(t) = y(t0) +
h

6
(ẏ1 + 2ẏ2 + 2ẏ3 + ẏ4) + O

(
h5
)

where h is the integration step-size, and O(h5) is the truncation error due to high order

terms.

If necessary higher-order Runge-Kutta integrators can be derived.[34] A general formu-

lation for an ith-order integration and using j-iterations over the time interval is:

y(t) = y0 + h

j−1∑
i=0

biẏi + O
(
hn+1

)
n = 0, 1, 2, ..., n− 1

ẏ0f(tn, yn) ci0 = pi

∑
j = 1i−1cij (5.3)

ẏi = f

(
tn + pih, yn + h

i−1∑
j=0

cij ẏj

)
i = 1, 2, ..., j − 1

where bi, cij, and pi are user-defined parameters. Refer to Fehlberg[37] and Der[38] for

discussion of the calculation of these parameters.
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5.1.3 Runge-Kutta-Fehlberg

A different implementation of the Runge-Kutta integration is the Runge-Kutta-Fehlberg,

or embedded Runge Kutta method. This method uses a variable single step-size that is

determined based on the error of the calculation. The step-size between the integration

time-steps is then varied to achieve the specified tolerance.

k1 = hf(t0, y0)

k2 = hf

(
t0 +

1

4
h, y0 +

1

4
k1

)
k3 = hf

(
t0 +

3

8
h, y0 +

3

32
k1 +

9

32
k2

)
(5.4)

k4 = hf

(
t0 +

12

13
h, y0 +

1932

2197
k1 −

7200

2197
k2 +

7296

2197
k3

)
k5 = hf

(
t0 + h, y0 +

439

216
k1 − 8k2 +

3680

513
k3 −

845

4104
k4

)
k6 = hf

(
t0 +

1

2
h, y0 −

8

27
k1 + 2k2 −

3544

2565
k3 +

1859

4104
k4 −

11

40
k5

)

The error must be evaluated to determine if it is within the specified tolerance by calcu-

lating a measure of the error, s, and determining if it is possible to optimize calculation

by increasing or decreasing the step-size:

error =
1

360
k1 −

128

4275
k2 −

2197

75240
k4 +

1

50
k5 +

2

55
k6 (5.5)

s ∼= 0.8408

[
1× 10−8h

error

]1/4

(5.6)

The conditions for varying the step-size h are:

if s < 0.75 and h > 2hmin then h = h/2

if s > 1.5 and 2h < 2hmax then h = 2h

This decision method is dependent on user-specified variables for hmin and hmax. Bounds

on the step-size are typically based on the initial step-size: hmin = h/64 and hmax = 64h.

If the step-size is varied, the time step must be recalculated and h varied until the error

tolerance is met:

else y = y0 +
25

216
k1 +

1408

2565
k3 +

2197

4104
k4 −

1

5
k5
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5.1.4 Adams-Bashforth

As mentioned previously, there are both single-step and multi-step integration techniques.

Adams-Bashforth is a multi-step integration technique. A good discussion of the differ-

ences can be found in Burden, et al. [39].

For the multi-step integrator, several of the initial fordward states must be determined,

most likely using a single-step integrator, such as Runge-Kutta, of the same order as the

multi-step integrator. The multi-step integrator then takes over and calculates explicit

methods for determining the forward state. Implicit methods are then used to correct

these values. This combination of explicit and implicit methods is known as the predictor-

corrector method.

The following is a method of integration based on the fourth-order Adams-Bashforth

method as predictor and one iteration of the Adams-Moulton method as corrector, with

the starting values obtained from the fourth-order Runge-Kutta method [39].

Given the initial conditions, calculate the first four time-steps using the Runge-Kutta

4th order integrator. Then, using a predictor and corrector as shown below, the future

states can be integrated:

predictor:

xi+1 = xi +
h

24
[55f(ti,xi)− 59f(ti−1,xi−1) + 37f(ti−2,xi−2)− 9f(ti−3,xi−3)]

corrector:

xi+1 = xi +
h

24
[9f(ti,xi) + 19f(ti−1,xi−1)− 5f(ti−2,xi−2) + f(ti−3,xi−3)]

where ẋ = f(t,x). First the predictor is calculated. The result is then augmented by the

corrector equation.

5.2 Interpolation

A user simulating dynamic equations may request the state at non-mesh points, or points

that were not specifically calculated in the integration algorithm. Such a calculation

requires the use of interpolation to find states in between the mesh points. For example,

a set of dynamic equations were integrated from 0 to 100 seconds with 5 second intervals.

However, it may be necessary to know the state at 56 seconds. An interpolation between

the 55 and 60 second mesh points is required to determine an approximate value for the

state at 56 seconds.
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5.2.1 Lagrange Interpolation

The simplest method of interpolation is the “sample and hold,” where the state is held

at each mesh point until the next update. For example, using such a simple interpolation

would cause the state at 55 seconds to be the same for all times until the new state at

60 seconds. Therefore, sample and hold is typically a poor estimate. The next best step

would be to use a linear interpolation:

P (t) =
t− t1
t0 − t1

x0 +
t− t0
t1 − t0

x1 (5.7)

where the points (t0, x0) and (t1, x1) are the mesh points and the function P (t) is the

linear interpolation function between the mesh points.

For variable order, the interpolation equation can be generalized to:

P (t) =
n∑

k=0

xkLn,k(t) (5.8)

Ln,k(t) =
n∏

i = 0

i 6= k

t− ti
tk − ti

(5.9)

where Ln,k is the nth Lagrange interpolating polynomial [39].

5.2.2 Cubic Spline Interpolation

The Lagrange interpolating polynomial is based upon a continuous, evaluated polyno-

mial from all of the mesh points. Another alternative is to derive a piecewise-polynomial

approximation using a collection of subintervals. Dividing the polynomial into subsec-

tions has the benefit of permitting a choice of the set of mesh points to include in the

interpolation, as well as setting the boundary conditions at the end meshpoints.

A cubic spline interpolation uses cubic polynomials between the nodes to attempt to

model a smooth and continuous interpolant. The algorithm is derived in Burden, et al.
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[39] and shown here:

for i=0,1,...,n-1 set hi = xi+1 − xi

for i=1,2,...,n-1 set αi =
3

hi

(xi+1 − xi)−
3

hi−1

(xi − xi−1) (5.10)

(5.11)

set l0 = 1 µ0 = 0 z0 = 0

for i=1,2,...,n-1 set li = 2(ti+1 − ti−1)− (hi−1)(µi−1)

µi =
hi

li
i = 1, 2, ...n− 1 (5.12)

zi =
αi − (hi−1)(zi−1)

li

set ln = 1 µn = 0 zn = 0

for j=n-1,n-2,...,0 set

cj = zj − µjcj+1

bj =
xj+1 − xj

hj

− hj

3
(cj+1 + 2cj) (5.13)

dj =
cj+1 − cj

3hj

The result is a set of coefficients that can be used to calculate the interpolation spline at

any point t in the spline interval j:

Sj(t) = xj + bj(t− tj) + cj(t− tj)
2 + dj(t− tj)

3 (5.14)

There is also a similar derivation of a cubic spline interpolation with clamped endpoints

shown in Burden, et al. [39, pg. 148].

5.3 Computation

Analog computation can be exact, such as calculating
√

2, or sin 4π. However, when these

computations are carried out on a computer, they must be represented digitally and are

therefore subject to errors due to the finite nature of their digital representation (from

before the analog computations can be calculated using some appropriate method such as

a series exansion to find approximations:
√

2 = 1.414213... and sin 4π = 0.054803665...).

Furthermore there needs to be consideration for the computational effort and speed

required to perform the large number of operations in a simulation. This section discusses

these issues, their effects on simulation, and ways to minimize these effects.
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5.3.1 Rounding Error

Rounding error is the effect of a digital representation of a real number. Most computers

have a common implementation of the IEEE Binary Floating Point Arithmetic Standard

754-1985 which uses a 64-bit (binary digit) representation for the real numbers. This

long real allows at least 16 decimal digits of precision [39].

The term roundoff error is the error that results from replacing an exact number with its

floating-point form. The error can be measured using absolute error : |p− p∗|, or relative

error : |p−p∗|
|p| , if p 6= 0, and where p∗ is the approximation of p.

Whereas the floating-point digital representation of a number reduces the accuracy of

an analog value, arithmetic operations on these numbers introduce different errors. For

example, subtracting nearly equal numbers leads to the cancellation of significant digits

and therefore introduction of error. Dividing by a number of small magnitude, or mul-

tiplying a number of large magnitude also enlarges the error. Therefore, it is sometimes

necessary to rearrange algorithms to minimize these arithmetic errors.

Another useful tip in numerical calculation is nesting of polynomials. Calculating a

polynomial in its nested form reduces the number of arithmetic operations and can greatly

decrease the error [39].

In the following example:

f(y) = x2 − 3x + 2

⇒ f(y) = x(x− 3) + 2

the first equation has a total of three multiplications and two additions (where subtrac-

tions are additions that are merely sign compliments), whereas the second equation has

2 additions and 1 multiplication. As discussed below, nesting not only decreases error,

but it can also increase operational speed.

5.3.2 Execution Speed

The optimization of code to increase execution speed is challenging subject. Depend-

ing on the programming language, there are numerous methods for decreasing program

running times such as the following:

1. Ordering arrays and vectors according to the layout of the array in memory to

promote sequential accessing;
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2. Using pointers to memory rather than producing expensive copies of data for simple

function calls;

3. Using predictive operation of the processor by knowing that if statements are

assumed to be true;

4. Using low-level, or machine code for small, quick functions;

5. Allowing compilers to optimize code, and possibly using a higher order optimization

scheme; and

6. Postponing calculation until necessary rather than merely at a function call;

While these tricks are useful for increasing running speed, they can also induce errors if

not used correctly. Furthermore, optimizations can be computer architecture dependent,

thereby stifling cross-platform compatability. Programming specific optimizations also

often produces illegible code, making maintenance and reuse difficult or impossible. The

goal of the user and programmer should be to first produce correctly functioning code,

then seek to optimize. Advanced optimization may require the developer to also do

research into the appropriate language, architecture, compiler and operating system.

Good resources include Meyers [40, 41], Stroustrup [28], Sutter [42, 43].

5.4 Summary

This chapter presented some numerical computation concepts that are important to the

implementation of a dynamic simulation application. The included examples of integra-

tors and interpolators form the mathematic library of Open-SESSAME, but they may

also be used for other software integration. This chapter also included some discussion of

digital errors that are introduced when modeling analog systems. The implementations

of the mathematical components, and previously discussed attitude and orbit algorithms

are presented in the next chapter.
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Chapter 6

Software Design

In this chapter the development, layout, and implementation of the Open-SESSAME

Framework is presented. An overview of the object-oriented design is covered followed

by an in-depth discussion of each of the libraries and toolkits. Finally, a demonstration

of the use of Open-SESSAME is given.

To begin, a definition of the Open-SESSAME acronym is given:

1. Open-Source - the source is free and available for users and developers. Changes

are propagated back to the community via the publicly hosted repository so the

software continues to grow and mature.

2. Extensible - the framework is designed with the premise that functionality will be

added as necessary by new users and developers. The code is plainly written and

well-documented to ease understanding of the source, and also encourages develop-

ment via hotspots, points which assist in adding functionality (i.e. environmental

disturbance functions, dynamic equations, kinematic representations, etc.).

3. Spacecraft - Open-SESSAME is developed with the target of simulating spacecraft

and satellites in outer space. While there are generic mathematical and operational

toolboxes (matrix, rotation, XML storage) as part of the software package, these

libraries were developed or interfaced with the given goal in mind.

4. Simulation And Modeling - Simulation is providing a user with a non-real, but

approximated environment that accurately corresponds to the real-world. Modeling

is the creation of the physical dynamics and characteristics of this simulated world.

Open-SESSAME is meant to be used as both a stand-alone model of spacecraft,
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and for use in creating simulations that interact with hardware and other software

programs.

5. Environment - the environment is the entire collection of dynamics, disturbances,

data handling operations and interfaces that allow the user to interact with the

simulation.

6. Framework - Open-SESSAME is a framework. It provides the tools and libraries

that are combined together to create a simulation environment. By themselves

they do not constitute an application, but must be joined by the user/developer in

a meaningful way to simulate and analyze their particular problem.

These terms form the basis of design and requirements for Open-SESSAME. The archi-

tecture presented below should fulfill these requirements and provide the user with an

easy to use and powerful tool for modeling spacecraft.

6.1 Framework Layout

The framework consists of a collection of libraries and toolkits that can be used in con-

junction to build a spacecraft simulation application of varying complexity, from simple

attitude kinematics analysis, to full orbit and attitude integrated propagation of a satel-

lite with multi-body dynamics and control mechanisms. A goal of the system is to

provide for this functionality in a modularized design such that specific components can

be inserted, replaced or taken out easily and accurately as desired by the user.

The following sections outline all of the components that make up the Open-SESSAME

framework. Their purpose and general use is defined, as well as typical operation of the

implemented aspects of the libraries. Furthermore, suggested extension points are pointed

out for future users and maintainers of the system that may require added functionality.

A diagram of the entire framework is shown in Figure 6.1. The specific toolkits include

UML (Unified Modeling Language) diagrams of their architecture and some interfaces

to the primary classes. For more information, refer to the Open-SESSAME User’s &

Maintainer’s Guide [44], or the Sourceforge Repository [45].
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Figure 6.1: UML diagram of spacecraft simulation application software components. This dia-
gram illustrates how an entire spacecraft simulation is built using Open-SESSAME framework
components. Open arrowheads denote a derived, or “is-a” relationship, where the module from
the base of the arrow inherits and extends the functionality of the module at the end of the
arrow (e.g. PositionVelocity is-a OrbitStateRepresentation). Solid arrowheads are a composi-
tion, or “has-a” relationship(e.g. AttitudeState has-a Rotation). Blocks that are stacked on
top of one another can be interchanged as necessary (e.g. replacing Position/Velocity orbital
components with Keplerian elements).
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6.1.1 Rotation Library

Description

The Rotation Library is a collection of kinematic representations and operations used

to represent coordinate transformations. Attitude orientations or orbit relative reference

frames require a transformation to describe their axes relative to a specified reference

frame. For instance, a rotation describes the transformation required to determine the

orbit reference frame from the Earth-Centered Inertial (ECI) reference frame: Roi. Refer

to Section 3.2 for an in-depth discussion of attitude kinematics.

The current representations are: Quaternion, Modified Rodriguez Parameters , and Di-

rection Cosine Matrix. The functionality is included , but not specifically implemented

in a seperate class, for Euler Angles and Euler Axis & Angle.

Rotation
-Quaternion
+SetDCM
+SetEulerAngles
+SetEulerAxisAngle
+SetMRP
+SetQuaternion
+GetDCM
+GetEulerAxisAngle
+GetMRP
+GetQuaternion

Quaternion

ModifiedRodriguez
Parameters

DirectionCosine
Matrix

Vector

Matrix

1

Other 
Representations

Figure 6.2: Rotation Library UML diagram. Rotation is an abstract class that provides an
interface functionality for any type of rotation. Internally Rotation stores a Quaternion, which
is derived from, and has the functionality of, a Vector. There are also classes for ModifiedRo-
driguezParameters and DirectionCosineMatrix. Future representations could include Gibbs
vector or an EulerAngle class.

Extension Point: there are other kinematic representations that could be implemented

as necessary, Gibb’s Vector or Euler-Rodriguez Parameters . These classes would be

derived from the Vector class and include the conversion algorithms to and from each

of the other existing representations. The user could extend the existing representations

to convert to the new representations, though it is suggested to try and minimize the

alteration of the existing classes.
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The main class of the Rotation Library is the Rotation class. The Rotation class is an

abstract representation (different from a Abstract Data Type, ADT) in that it is not a

specific type of representation but rather a general rotation concept between reference

frames. For this reason, the Rotation class may be set, and can be output in, any of the

kinematic representation types. The class can also be used to determine successive and

relative rotations.

Implementation

Each of the major kinematic representations is encapsulated in a class, all of which are de-

rived from the Vector or Matrix classes, and therefore, the representations include all the

functionality of these classes while extending more functionality to include appropriate

conversion and transformation operations. The added funtionality includes getting and

setting the representation from any other representation as well as determining successive

and relative rotations between like kinematic types.

The Rotation class has a Quaternion as a private data member, which is not directly

accessible from outside of the class. The user accesses and manipulates the data using

the provided public member functions. The quaternion representation was chosen since

it does not exhibit difficulties due to singularities like other representations and also only

contains four elements, saving a small amount of data over larger representations, like a

Direction Cosine Matrix.

Usage

The following code is an example of using the Rotation Library to create various kinematic

rotations and output these values to console.

// create a DCM with successive rotations of [30,-10,5] degs

// in a 123 rotation order

DirectionCosineMatrix dcm1(deg2rad(30),deg2rad(-10),deg2rad(5), 123);

// create a quaternion that is the same attitude transformation as dcm1

Quaternion q1(dcm1);

// create a second quaternion from the transpose of dcm1 (~dcm1)

Quaternion q2(~dcm1);

// create a rotation from the successive rotation of q1 and q2

Rotation rot1(q1 * q2);

// output rot1 to the standard stream (usually the screen)
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cout << rot1;

Vector eulerAxis;

double eulerAngle;

// convert rot1 to the Euler Axis and Angle

// returned by reference

rot1.GetEulerAxisAngle(eulerAxis, eulerAngle);

// output the axis and angle to the console

cout << eulerAxis << eulerAngle;

6.1.2 Attitude Toolkit

Description

The Attitude Toolkit is the collection of classes and tools that provide for analyzing,

modeling, and simulating the attitude of a spacecraft. This collection includes state

representations, kinematic and dynamic equations of motion, and the general spaceraft

attitude as discussed in Chapter 3.

Implementation

The AttitudeState class represents the actual attitude measurement of a spacecraft at

an instant in time. It contains a reference to both the appropriate rotation and relative

reference frame of the rotation. Therefore, the AttitudeState class encapsulates this

combined data into a single, succinct class with methods.

The kinematic and dynamic equations of motion are the physical algorithms that describe

the motion of the spacecraft due to torques, disturbances, and any other desired modeling

characteristic.

ẋ = f(t,x, pOrbit, pAttitude, Parameters,DisturbanceFunction) (6.1)

These functions follow a generalized prototype, odeFunctor, which allows any kinematic

and kinetic equation to be used, as long as it follows this function prototype. This proto-

type is shown in Equation 6.1. The state, x, is the vector of states values at time t. The

pOrbit and pAttitude inputs are instances of the current Orbit and Attitude classes

at the evaluation time, Parameters are any constants, and DisturbanceFunction is a

reference to the disturbance function (such as torque disturbances). Currently there are
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kinematic and dynamic equations that make use of the quaternion kinematic represen-

tation and angular velocities.

Attitude AttitudeState

Rotation

AttitudeFrame

1

1

1..n 
   Vector 

AngularVelocity
1

odeFunctor

Quaternion
AngularVelocity

Any Kinematic or 
Kinetic EOM

ModifiedRodriguez
AngularMomentum

Kinematic & Kinetic 
Equations of Motion

* 

Figure 6.3: Attitude toolkit UML diagram. The Attitude class stores a history of one or many
AttitudeStates. Each AttitudeState stores a frame, Rotation, and Angular Velocity. Attitude
also has a function pointer (denoted by the * on the line connecting Attitude to odeFunctor)
to a dynamics equation.

Extension Point: It is apparent that there are other kinematic representations that

may be used in modeling the attitude dynamics. Furthermore, the engineer may desire

to integrate and model any number of attitude related characteristics such as momentum

wheels, or kinetic energy. These algorithms can be implemented and verified by the user

as necessary using the existing algorithms as a model.

Another necessary part of the Attitude Toolkit is the collection of attitude state conversion

functions. The standard state output vector, such as may be returned from an integration

timestep, consists of the simulation time and state components. The state conversion

function translates this vector to an AttitudeState object. These functions are required

since the simulator does not know what the state vector components are but requires

knowledge of the attitude state from the integrated dynamics.

All of the attitude information is contained in the Attitude object. This general class

contains the current attitude state, a history of attitude states (see Section 6.1.7), and a
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reference to the equation of motion to use for integration.

Usage

The following code fragment creates an attitude state and sets the rotation and angular

velocity vector.

// Create the initial attitude state

AttitudeState myAttitudeState;

myAttitudeState.SetRotation(Rotation(Quaternion(0,0,0,1)));

Vector initAngVelVector(3); // elements initially all [0,0,0]

initAngVelVector(1) = 0.1;

myAttitudeState.SetAngularVelocity(initAngVelVector);

6.1.3 Orbit Toolkit

Description

The Orbit Toolkit includes all the functionality to represent and simulate a spacecraft

orbit. This toolkit includes, similar to the Attitude Toolkit , state representations, kine-

matic and dynamic equations of motion, and the general spacraft orbit as discussed in

Chapter 4.

Implementation

The orbit state is representated by a conglomeration of classes. OrbitStateRepresen-

tation is an abstract interface definition for storing and converting the state parameters

of an orbit. The two primary representations are Keplerian and PositionVelocity.

Each class stores a vector of its respective parameters and provides conversion func-

tions for changing between the parameter types. Future representations could include

canonical units, Delauney, or Poincaré variables.

State representations are accompanied by OrbitFrame, which stores the information

regarding the frame from which the OrbitStateRepresentation is measured. Example

frames could be Earth-Centered Inertial, Moon-Centered Moon-Fixed, or other perti-

nent representations. By associating a frame with a state representation, consistency

is promoted to prevent comparing, for example, position vectors in ECI versus ECEF
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frames. Therefore, the OrbitState class contains both an OrbitStateRepresentation

and an OrbitFrame. This concise class ensures that orbit state information that is

passed through functions has a representation in a specified frame.

Orbit

OrbitState

OrbitState-
Representation OrbitFrame

PositionVelocity

Keplerian

Delauney

Poincaré OrbitFramePQW

OrbitFrameECEF

OrbitFrameIJK

OrbitFrameRSW

1 1

1..n    

Other State 
Representations Other OrbitFrames

Figure 6.4: Orbit toolkit UML diagram. The Orbit class stores the current OrbitState as well
as a history of the states. Each OrbitState stores a representation and the reference frame.
Orbit also has a dynamics equation pointer which is not shown in the diagram.

The Orbit class, much like the Attitude class, is a general encapsulation of the current

orbit state, orbit history, associated environment, and reference to the current propagator

and dynamic equations.

Usage

The following code example creates an orbit state with a position and velocity represen-

tation in the inertial frame.

// create an instance of OrbitState

OrbitState myOrbit;
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// specify the state rep to be position, velocity

myOrbit.SetStateRepresentation(new PositionVelocity);

// set the refererence frame to earth inertial

myOrbit.SetOrbitFrame(new OrbitFrameIJK);

// specify the individual components of the vector

Vector initPV(6);

initPV(1) = -5776.6; // km

initPV(2) = -157; // km

initPV(3) = 3496.9; // km

initPV(4) = -2.595; // km/s

initPV(5) = -5.651; // km/s

initPV(6) = -4.513; // km/s

// store the vector in the OrbitState object

myOrbit.GetStateRepresentation()->SetPositionVelocity(initPV);

6.1.4 Environment

Description

The Environment Toolkit is the collection of central bodies, external force and torque

disturbance functions, and method of calculating the effect of the environment on a

spacecraft. The primary class, Environment, encapsulates all of the environment data

that is usually referenced by the Orbit and Attitude objects.

Implementation

The user can create an instance of a CentralBody, a representation of the Earth, Moon,

or whichever celestial body about which the spacecraft is situated. This CentralBody

object contains information regarding the radius, atmosphere, angular velocity, mass,

and any other data that is pertinent to spacecraft modeling. The EarthCentralBody

and other planets and moons are derived from the CentralBody class and, therefore,

have the general functionality of the CentralBody.

The Environment object contains a reference to the central body and a list of the ap-

plied disturbance functions. These disturbance functions have a generalized but specified

interface (time, orbit state, and attitude state) that is used to calculate the specific torque

or force on the spacecraft during the integration of the dynamics. The user creates these
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functions, assigns constants that may be used (spacecraft mass, altitude, reflectivity),

and stores them in the Environment instance that is used for the spacecraft. In each in-

tegration step, the attitude or orbit dynamics may call this function, at the instantaneous

state, to obtain the torques and forces upon the spacecraft.

Environment

EarthCentralBody

CentralBody EnvFunction

TwoBodyGravity

SimpleAeroDrag

SimpleSolar
RadiationPressure

GravityGradient

Aerodynamic
Torque

MagneticDipole

Force Environmental 
Disturbance Functions

Torque Environmental 
Disturbance Functions

1 0,1..n

MoonCentralBody

MarsCentralBody

ComplexAeroDrag

Other Environment 
Force Functions

J2GravityModel

Complex
MagneticDipole

Other Environment 
Torque Functions

Complex
GravityGradient

Other 
CentralBodies

Figure 6.5: Environment toolkit UML diagram. Environment consists of a CentralBody and
any number of force or torque EnvFunctions that contribute a disturbance during propagation
of an orbit or attitude.

Usage

The following large section of code does the following tasks: creates an environment

(allocate memory), creates and assigns the Earth central body, adds the two body force
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function to the environment, and adds a drag force function that requires a ballistic

coefficient and air density variable.

// create a new environment and allocate memory

Environment* pEarthEnv = new Environment;

// create and allocate memory for the earth representation

EarthCentralBody *pCBEarth = new EarthCentralBody;

// set the earth CB to the environment object

pEarthEnv->SetCentralBody(pCBEarth);

// add Gravity force function

cout << "Filling Parameters" << endl;

EnvFunction TwoBodyGravity(&GravityForceFunction);

pEarthEnv->AddForceFunction(TwoBodyGravity);

// add Drag Force Function

EnvFunction DragForce(&DragForceFunction);

// setup the ballistic coefficient parameter

double *BC = new double(200);

DragForce.AddParameter(reinterpret_cast<void*>(BC), 1);

// setup the atmospheric density parameter

double *rho = new double(1.13 * pow(10., -12.)); // kg/m^3

DragForce.AddParameter(reinterpret_cast<void*>(rho), 2);

// add the force function to the environment

pEarthEnv->AddForceFunction(DragForce);

The reinterpret cast ¡void*¿ code is necessary to maintain the generality of the input

variables. Using this casting allows the user to pass in parameters of any type without

changing the environment’s force and torque calculating functions.

6.1.5 Integrator

Description

The Integrator library is part of the math library, but requires some specific explanation.

Integration in Open-SESSAME is modeled after integration use in MatLab. The user
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must specify a dynamic equation of the following form to be integrated :

ẋ = f(t,x) (6.2)

where x is the state vector, and ẋ is the time derivative of the state vector. The function

f(t,x) is referred to as the “Right-Hand Side,” or RHS. The state vector can be any

components the user may wish to integrate, whether it is a quaternion and angular

velocities, or position, kinetic energy, and momentum. This dynamic equation is then

integrated using an implemented integrator, which is described in Section 5.1, such as

RungeKuttaIntegrator or AdamsBashforthIntegrator.

Integrator

RungeKutta
Integrator

AdamsBashforth
Integrator

Interpolator

Linear
Interpolator

CubicSpline
Interpolator

NaturalCubicSpline
Interpolator

FixedStep 
Integrator

VariableStep
Integrator

Other Interpolators

Other VariableStep 
Integrators

Other FixedStep 
Integrators

Figure 6.6: Math toolkit UML diagram. The Integrator and Interpolator classes provide consis-
tent interfaces as base classes. The derived classes (open arrowheads) implement the particular
algorithm.

Implementation

As mentioned above there are several integrators available, all of which are derived from

Integrator. This superclass defines that the integrators must all include an Integrate()

function that takes the current time, integrating state vector, initial conditions, reference

to an orbit and attitude (if required), constants for calculation, and a reference to an

external force function.
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The reference to an orbit or attitude is used only when some coupling is required. These

references are passed directly to the dynamics equation (RHS), and may be queried for

environmental information, state parameters, or other constants. If no coupling occurs,

or the information is not needed, the user is not required to send these references. The

constants for calculation are a matrix of any other parameters needed for the dynamics

equation, and are held constant during the integration. Finally, the external force func-

tion is a Functor, a type of call-back function that the user may specify for evaluating

the force or torque disturbance function. A Functor permits the user to use the member

function of a class, such as the Environment GetForces() function.

The output of the integration is a vector of times and states at each of these times. The

step-size between the state outputs is dependent on the integration method employed as

well as the specific parameters set by the user in the case of a multi-step or variable-step

integration scheme.

Usage

The code example creates a Runge-Kutta 4th order integrator, sets the integration time to

20 seconds, and then integrates an AttitudeDynamics equation with no orbit or attitude

coupling, and also passes in a matrix of the moments of inertia (Parameters) and the

disturbance force function (AttitudeForcesFunctor):

// setup an integrator and any special parameters

RungeKuttaIntegrator myIntegrator;

myIntegrator.SetNumSteps(1000);

// integration times

vector<ssfTime> integrationTimes;

ssfTime begin(0);

ssfTime end(begin + 20);

integrationTimes.push_back(begin);

integrationTimes.push_back(end);

// call the integrator

Matrix history = myIntegrator.Integrate(

integrationTimes, // seconds

&AttituteDynamics,

myAttitudeState.GetState(),

NULL,

NULL,
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Parameters,

AttitudeForcesFunctor

);

6.1.6 Propagator

Description

The Propagator Toolkit provides the functionality necessary to simplify the entire simu-

lation process by encapsulating the simulatenous operation of many of the other toolkits,

such as Integration, Orbit , Attitude, and Environment . Furthermore, it also is useful

for coupling orbit and attitude dynamics. There are several existing schemes, as well

as extension points for any new algorithms, for varying degrees of coupling. Currently,

there are independent, weak (attitude dependent on orbit, or orbit dependent on at-

tiude), strong (orbit and attitude interdependent), and joined (fully coupled dynamic

equations) propagation schemes. A Propagator can also be used when the attitude or

orbit is available from an external source (e.g. file, hardware, other software package).

Implementation

The Propagator class provides a defined interface to the library of propagators. The

two derived classes, NumericPropagator and AnalyticPropagator, each implement

the respective method of propagation. Specifically, a NumericPropagator requires an

Orbit and/or Attitude class with dynamic equations or populated history. When the

user assigns an orbit with a dynamics equation, the propagator will integrate the orbit,

according to the propagation scheme, which is the same for attitude.

If the user does not include an orbit or attitude object, then the class will not attempt

to integrate it. If a orbit or attitude is supplied (via external methods such as from file

or hardware), then the other motion may use the assigned orbit or attitude history to

calculate the dynamics due to coupling. For example, if only an orbit dynamics equation

is supplied to a coupled propagator, then the propagator could use an attitude history

file to use when calculating the orbit dynamics.

An EnckeCombinedPropagator is a unique scheme that applies Encke corrections to

the orbit propagation during attitude propagation. The user may inherit from the Nu-

mericPropagator or AnalyticPropagator to implement new propagation schemes.
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Propagator

NumericPropagator

Combined-
NumericPropagator

AnalyticPropagator

EnkeCombined-
NumericPropagator

AnalyticPropagator 
Schemes

Other Numeric 
Propagators

Figure 6.7: Dynamics library UML diagram. Like the Integrator class, Propagator provides an
interface that is consistent for each of the derived classes. NumericPropagators use integrators
to numerically compute the state at future times. AnalyticPropagators use closed-form solutions
to evaluate the state at a future time.
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Usage

The example code creates a new CombinedNumericPropagator, adds Runge-Kutta

integrators, and sets the state conversion functions, as mentioned previously. The prop-

agator is then assigned to the appropriate orbit and attitude object, and propagated for

a set amount of time given the initial conditions.

// create and allocate memory for the propagators and integrators

CombinedNumericPropagator* myProp = new CombinedNumericPropagator;

RungeKuttaIntegrator* orbitIntegrator = new RungeKuttaIntegrator;

RungeKuttaIntegrator* attitudeIntegrator = new RungeKuttaIntegrator;

// specify the number of integration steps for the integrators

orbitIntegrator->SetNumSteps(100);

myProp->SetOrbitIntegrator(orbitIntegrator);

attitudeIntegrator->SetNumSteps(1000);

myProp->SetAttitudeIntegrator(attitudeIntegrator);

// specify the conversion functions from mesh points to states

myProp->SetOrbitStateConversion(&myOrbitStateConvFunc);

myProp->SetAttitudeStateConversion(&myAttitudeStateConvFunc);

// specify the propagator being used

myOrbit->SetPropagator(myProp);

myAttitude->SetPropagator(myProp);

// propagate

myProp->Propagate(integrationTimes,

myOrbit->GetStateObject().GetState(),

myAttitude->GetStateObject().GetState());

6.1.7 Data Handling

The Data Handling library is a collection of classes and functions for interacting with

large sets of data as well as the external system environment. The History class and

associated subclasses are used for storing the states of the spacecraft’s orbit, attitude,

or other parameters during simulation. The Converter collection of classes is used for
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saving and restoring the spacecraft states and parameters from a variety of forms, such

as comma-separated value ASCII, MatLab, Satellite ToolKit (STK), or XML. Lastly, the

communications software is included that allows an Open-SESSAME application to con-

nect to networked machines to retrieve state, send state, or control multiple simulations

or external software packages.

History

AttitudeState OrbitState

AttitudeHistory OrbitHistory

ssfTime
0,1..n

0,1..n 0,1..n

Other History 
Collections

ControlHistory
(Torque / Force)

ControlState Applicable Data 
or State

0,1..n 0,1..n

Figure 6.8: Data Handling toolkit UML diagram. History is a base class that provides a consis-
tent interface and also stores the corresponding time value for each stored state. AttitudeHistory
and OrbitHistory are derived classes that store AttitudeState and OrbitState respectively.

History

To succinctly store any number of states of the spacecraft, the History class provides

a dynamically resizable vector of times, and derived classes add state variables that can

be stored at associated times. For example, OrbitStateHistory and AttitudeState-

History each respectively store the OrbitState and AttitudeState of the spacecraft

after integration. These can then be retrieved, stored, or erased.

Furthermore, because integration only produces discrete meshpoints, the history objects

include an Interpolator which is used to calculate requested states in between mesh-

points. The current interpolators include LinearInterpolator and CubicSplineInter-

polator, but developers are free to implement new interpolators as necessary.

History myHistory; // create a history with an empty collection

myHistory.AppendHistory(0); // add 0 seconds to the history

myHistory.AppendHistory(10);// add 10 seconds to the history
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// Get a matrix of the stored times and output at t=3 s

cout << myHistory.GetHistory(3) << endl;

6.1.8 Time

The class ssfTime encapsulates simulation time, and allows for conversion to different

time formats (i.e. UTC or Julian Date). Each time object is associated with a stored

time, and an epoch time. Therefore, all time instances have a reference time they are

measured from, such as the time since launch or a system clock time. The Time library

also includes tools for using time objects, such as getting the current time, or measuring

the operation time of a calculation (tick and tock).

// create an instance of the ssfTime object

ssfTime simTime;

// create a new time object and set it to 10 seconds

ssfSeconds integrationTime = 10;

// set the simTime instance to the value of intTime

simTime.Set(integrationTime);

// create a nowTime instance and set it to the clock time

ssfTime nowTime(Now());

6.2 Using the Framework

Because Open-SESSAME is a framework, there is no prescribed method for creating an

application. An application is a stand-alone program that carries out a specified purpose,

such as simulating a spacecraft, while the framework provides the tools necessary to build

an application.

However, Open-SESSAME, by design, has suggested methods of implementing various

applications, including attitude or orbit integration, coupled propagation, hardware-in-

the-loop testing, or using libraries in flight code. The following sections present suggested

architectures for these example applications. These designs should serve as a model for

users developing their own applications.
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6.2.1 Attitude Simulation

An attitude simulation is a stand-alone integration of the spacecraft attitude dynamics

equation with a possible disturbance torque function. The following steps could be

followed to simulate a spacecraft’s attitude:

1. Code the attitude dynamics equation

2. Code the disturbance torque function

3. Assign function parameters

4. Create an initial attitude state

5. Create and initialize integrator

6. Integrate the equations

7. Graph or output the state history

These steps are shown in the code snippets blow and the module interconnections are

illustrated in Figure 6.9.

Attitude

Rotation Quaternion

VectorAttitudeState

EnvFunction

HistoryConverter

AttitudeHistory

AttitudeFrame

Attitude 
Dynamics

Runge-Kutta 
Integrator

CubicSpline 
Interpolator

Figure 6.9: Attitude integration using Open-SESSAME.
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Code the attitude dynamics equation

The dynamics equation is the right-hand side time derivative of the attitude dynamics.

The function requires the current integration time, integrating state, spacecraft attitude

and orbit (if applicable), a matrix of parameters, and a function pointer to the disturbance

function.

static Vector AttituteDynamics(const ssfTime &_time,

const Vector& _integratingState,

Orbit *_Orbit, Attitude *_Attitude,

const Matrix &_parameters,

const Functor &_forceFunctorPtr)

{

// initialize the variables, static to save memory allocation

static Vector stateDot(7);

static Matrix bMOI(3,3);

static Matrix qtemp(4,3);

static Matrix Tmoment(3,1);

static Vector qIn(4);

static Vector qDot(4);

static Vector wIn(3);

static Vector wDot(3);

// get the state variables from the input integrating state

qIn = _integratingState(_(1, 4));

wIn = _integratingState(_(5,7));

// normalize the quaternion

qIn /= norm2(qIn);

// calculate qDot

qtemp(_(1,3),_(1,3)) = skew(qIn(_(1,3))) + qIn(4) * eye(3);

qtemp(4, _(1,3)) = -(~qIn(_(1,3)));

qDot = 0.5 * qtemp * wIn;

// get the moments of inertia from the input parameters

bMOI = _parameters(_(1,3),_(1,3));

// calculate the disturbance torques

Tmoment(_,_) = (_forceFunctorPtr.Call(_time, _Orbit->GetStateObject(),

_Attitude->GetStateObject()))(_);

// calculate omegaDot
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wDot = (bMOI.inverse() * (Tmoment - skew(wIn) * (bMOI * wIn)));

// setup the time derivate return state vector

stateDot(_(1,3)) = qDot;

stateDot(_(5,7)) = wDot;

return stateDot;

}

Code the disturbance torque function

The disturbance function would contain any modeled torque disturbances. This example

models no disturbance torques.

Vector NullFunctor(const ssfTime& _pSSFTime,

const OrbitState& _pOrbitState,

const AttitudeState& _pAttitudeState)

{

return Vector(3);

}

Assign function parameters

Function parameters are used to pass information into the dynamics equation. In this

example, the moments of inertia are used in the right-hand side. The disturbance torque

function is set to the empty modeling function from above.

Matrix I(3,3); //I=[100 0 0;0 200 0;0 0 150];

I(1,1) = 100;

I(2,2) = 200;

I(3,3) = 150;

SpecificFunctor AttitudeTorquesFunctor(&NullFunctor);

Create an initial attitude state

The initial attitude is setup with a quaternion corresponding to no rotation and an

angular velocity of 0.1 m/s about the x-axis.



6.2 Using the Framework 87

AttitudeState myAttitudeState;

myAttitudeState.SetRotation(Rotation(Quaternion(0,0,0,1)));

Vector initAngVelVector(3);

initAngVelVector(1) = 0.1;

myAttitudeState.SetAngularVelocity(initAngVelVector);

Create and initialize integrator

The Runge-Kutta integrator is configured with 1000 steps for 20 seconds.

RungeKuttaIntegrator myIntegrator;

myIntegrator.SetNumSteps(1000);

// Integration times

vector<ssfTime> integrationTimes;

ssfTime begin(0);

ssfTime end(begin + 20);

integrationTimes.push_back(begin);

integrationTimes.push_back(end);

Integrate the equations

The integration function is called within a “tick()” and “tock()” to calculate the operating

time.

cout << "PropTime = " << begin.GetSeconds() << " s -> "

<< end.GetSeconds() << " s" << endl;

cout << "Attitude State: " << ~myAttitudeState.GetState() << endl;

tick();

Matrix history = myIntegrator.Integrate(

integrationTimes, // seconds

&AttituteDynamics,

myAttitudeState.GetState(),

NULL,

NULL,

I,

AttitudeTorquesFunctor
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);

cout << "finished propagating in " << tock() << " seconds." << endl;

Graph or output the state history

Figure ?? shows an example attitude plot from Open-SESSAME using gnuplot. The

formatting is plain, and allows the user to change the format as needed.

cout << history;

Matrix plotting = history(_,_(1,5));

Figure 6.10: An example gnuplot output from Open-SESSAME of an attitude integration. A
Plot class is provided that encapsulates formatting, labeling, and saving.

6.2.2 Orbit Simulation

An orbit simulation is a stand-alone integration of the spacecraft orbit dynamics equation

with a possible disturbance function (such as gravity). The following steps could be

followed to simulate a spacecraft orbit:

1. Code the orbit dynamics equation
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2. Code the disturbance force function

3. Assign function parameters

4. Create an initial orbit state

5. Create and initialize integrator

6. Integrate the equations

7. Graph or output the state history

The component interaction is similar to attitude integration’s design. The orbit simula-

tion code snippets are shown below.

Code the orbit dynamics equation

The orbit dynamics equation is the right-hand side describing the orbit time derivative.

It is similar to the attitude dynamics equation and uses the same parameters.

static Vector TwoBodyDynamics

(const ssfTime &_time, const Vector& _integratingState,

Orbit *_pOrbit, Attitude *_pAttitude,

const Matrix &_parameters,

const Functor &_forceFunctorPtr)

{

// setup the initial variables

static Vector Forces(3);

static Vector Velocity(3);

static Vector stateDot(6);

static AttitudeState tempAttState;

static OrbitState orbState(new PositionVelocity);

orbState.GetStateRepresentation()

->SetPositionVelocity(_integratingState);

// if the orbit is dependent on the attitude and

// an attitude representation exists, calculate the

// force function with the attitude

if(_pAttitude)
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Forces = _forceFunctorPtr.Call(_time, orbState,

_pAttitude->GetStateObject());

else

Forces = _forceFunctorPtr.Call(_time, orbState, tempAttState);

Velocity(_) = _integratingState(_(4,6));

// form the time derivative vector

stateDot(_(1, 3)) = Velocity(_);

stateDot(_(4, 6)) = Forces(_);

return stateDot;

}

Code the disturbance force function

This force function models two body gravity using the parameters passed into the func-

tion.

Vector GravityForceFunction(const ssfTime &_currentTime,

const OrbitState &_currentOrbitState,

const AttitudeState &_currentAttitudeState,

const EnvFuncParamaterType &_parameterList)

{

static Vector Forces(3);

static Vector Position(3);

Position(_) = _currentOrbitState.GetState()(_(1,3));

Forces = *(reinterpret_cast<double*>(_parameterList[0]))

/ pow(norm2(Position),3) * Position;

return Forces;

}

Assign function parameters

Matrix Parameters(1,1);

Parameters(1,1) = 398600.4418; //km / s^2
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Create an initial orbit state

An initial orbit state is setup using position and velocity in the earth-centered inertial

frame.

OrbitState myOrbit;

myOrbit.SetStateRepresentation(new PositionVelocity);

myOrbit.SetOrbitFrame(new OrbitFrameIJK);

Vector initPV(6);

initPV(1) = -5776.6; // km

initPV(2) = -157; // km

initPV(3) = 3496.9; // km

initPV(4) = -2.595; // km/s

initPV(5) = -5.651; // km/s

initPV(6) = -4.513; // km/s

myOrbit.GetStateRepresentation()->SetPositionVelocity(initPV);

Create and initialize integrator

RungeKuttaIntegrator myIntegrator;

myIntegrator.SetNumSteps(100);

vector<ssfTime> integrationTimes;

ssfTime begin(0);

ssfTime end(begin + 100);

integrationTimes.push_back(begin);

integrationTimes.push_back(end);

Integrate the equations

cout << "PropTime = " << begin.GetSeconds() << " s -> "

<< end.GetSeconds() << " s" << endl;

cout << "Orbit State: "

<< ~myOrbit.GetStateRepresentation()->GetPositionVelocity()

<< endl;

tick();

Matrix history = myIntegrator.Integrate(
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integrationTimes, // seconds

&TwoBodyDynamics,

myOrbit.GetStateRepresentation()->GetPositionVelocity(),

NULL,

NULL,

Parameters,

OrbitForcesFunctor

);

cout << "finished propagating in " << tock() << " seconds." << endl;

Graph or output the state history

Figure 6.11 shows an example output from this example case. However, since the sim-

ulation time is short (100 seconds), an extended length output is shown in Figure 6.12.

Currently, Open-SESSAME only uses a basic gnuplot output, with formatting possible

by the user.

Matrix plotting = history(_,_(2,4));

Plot3D(plotting);

6.2.3 Coupled Simulation

Coupled simulation involves integrating the orbit and attitude dynamic equations with

some dependence of one dynamic or disturbance function on the state of the other. As dis-

cussed previously, there are several different schemes for propagating coupled equations.

However, each scheme would employ the same, following method. This implementation

assumes the user is using the orbit and attitude dynamics, distubance functions, function

parameters, and initial state from before. The entire application architecture is shown

in Figure 6.13.

1. Create and populate the environment

2. Define orbit and attitude conversion functions

3. Create and initialize the propagator

4. Propagate the equations
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Figure 6.11: Example gnuplot output of an orbit integration. While this plot is an accurate
plot of the position during teh simulation, it does not demonstrate the orbit well.

Figure 6.12: An extended length example plot of orbit integration. This plot is the using
the simulation as shown in Figure 6.11 but with a longer simulation time to demonstrate the
plotting of an orbit where the geometry can be seen.
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5. Graph or output the state history
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Figure 6.13: UML diagram of an Open-SESSAME coupled orbit simulation application.

Create and populate the environment

Environment* pEarthEnv = new Environment;

EarthCentralBody *pCBEarth = new EarthCentralBody;

pEarthEnv->SetCentralBody(pCBEarth);

// Add Gravity force function

cout << "Filling Parameters" << endl;

EnvFunction TwoBodyGravity(&GravityForceFunction);

pEarthEnv->AddForceFunction(TwoBodyGravity);
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// Add Drag Force Function

EnvFunction DragForce(&DragForceFunction);

double *BC = new double(200);

DragForce.AddParameter(reinterpret_cast<void*>(BC), 1);

double *rho = new double(1.13 * pow(10., -12.)); // kg/m^3

DragForce.AddParameter(reinterpret_cast<void*>(rho), 2);

pEarthEnv->AddForceFunction(DragForce);

myOrbit->SetEnvironment(pEarthEnv);

myAttitude->SetEnvironment(pEarthEnv);

Define orbit and attitude conversion functions

void myOrbitStateConvFunc(const Matrix &_meshPoint,

OrbitState &_convertedOrbitState)

{

static Vector tempVector(_meshPoint[MatrixColsIndex].getIndexBound() - 1);

tempVector(_) =

~_meshPoint(_, _(2, _meshPoint[MatrixColsIndex].getIndexBound()));

_convertedOrbitState.SetState(tempVector);

return;

}

void myAttitudeStateConvFunc(const Matrix &_meshPoint,

AttitudeState &_convertedAttitudeState)

{

static Vector tempQ(4); tempQ(_) = ~_meshPoint(_,_(2, 5));

static Vector tempVector(3); tempVector(_) = ~_meshPoint(1, _(6, 8));

_convertedAttitudeState.SetState(Rotation(Quaternion(tempQ)), tempVector);

return;

}

Create and initialize the propagator

CombinedNumericPropagator* myProp = new CombinedNumericPropagator;

// Create & setup the integator
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// Setup an integrator and any special parameters

RungeKuttaIntegrator* orbitIntegrator = new RungeKuttaIntegrator;

RungeKuttaIntegrator* attitudeIntegrator = new RungeKuttaIntegrator;

orbitIntegrator->SetNumSteps(100);

myProp->SetOrbitIntegrator(orbitIntegrator);

attitudeIntegrator->SetNumSteps(1000);

myProp->SetAttitudeIntegrator(attitudeIntegrator);

myProp->SetOrbitStateConversion(&myOrbitStateConvFunc);

myProp->SetAttitudeStateConversion(&myAttitudeStateConvFunc);

myOrbit->SetPropagator(myProp);

myAttitude->SetPropagator(myProp);

Propagate the equations

int numOrbits = 5

vector<ssfTime> integrationTimes;

ssfTime begin(0);

ssfTime end(begin + 92*60*numOrbits);

integrationTimes.push_back(begin);

integrationTimes.push_back(end);

cout << "PropTime = " << begin.GetSeconds() << " s -> "

<< end.GetSeconds() << " s" << endl;

cout << "Orbit State: "

<< ~myOrbit->GetStateObject().GetState() << endl;

cout << "Attitude State: "

<< ~myAttitude->GetStateObject().GetState() << endl;

// Integrate over the desired time interval

myPropagator->Propagate(integrationTimes,

myOrbit->GetStateObject().GetState(),

myAttitude->GetStateObject().GetState());
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Graph or output the state history

Matrix orbitHistory = myOrbit->GetHistory().GetHistory();

// plotting rx, ry, rz

Matrix orbitPlotting = orbitHistory(_,_(2,4));

Matrix attitudeHistory = myAttitude->GetHistory().GetHistory();

// plotting t:(q1,q2,q3,q4)

Matrix attitudePlotting = attitudeHistory(_,_(1,5));

Plot3D(orbitPlotting);

Plot2D(attitudePlotting);

6.2.4 Simulation with Flight Components

Another benefit of using the Open-SESSAME framework is the ability to configure a sim-

ulation that can integrate with flight hardware and software for simulating the space en-

vironment and flight operations. Software components interact with an Open-SESSAME

simulation during testing, and are incrementally replaced with hardware components as

they become available. Testing then can verify the operation of the hardware, on the

bench, in the same simulation environment.

Figure 6.14 shows the application architecture and interaction between flight software

and an Open-SESSAME simulation. The sensor stubs interact with the flight software

like the hardware drivers, but query the simulation application for the current state

information. The sensor stub then converts this simulated state information into the

sensor’s expected output, and adds any simulated measurement errors. Communication

occurs through a socket connection, which allows the simulation server to reside and

operate on a separate machine if necessary.

6.2.5 Integrating with External Programs

The Open-SESSAME framework also includes tools for communicating and exporting

to external programs such as Satellite ToolKit or MatLab. The simplest method is to

convert the state history data to the external program’s format, and then loading the

history file into the external program. As new external programs are required, new

converters can be implemented.

Another means of interfacing an Open-SESSAME simulation to an external program is
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Figure 6.14: Use of Open-SESSAME for hardware-in-the-loop testing and integration. The
compoents above the horizontal line are flight hardware software components. The software
stubs communicate via a communications layer to an Open-SESSAME application server. These
stubs then simulate hardware measurement error and output. The stubs can then be replaced
as hardware components are introduced.
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to create a real-time connection, such as shared memory, that provides data or controls

the external program. An example of connecting to an external program is providing

real-time attitude data to an STK simulation. Connections are made with socket and

commands are sent as standard ASCII lines that can control the STK simulation and

provide the real-time data. This type of connection would use some of the tools from the

Open-SESSAME communication library, and send commands as per STK’s prescribed

interface [46].

6.3 Summary

This chapter presented the reader the design of the Open-SESSAME framework and all

the components that make up the framework’s libraries and toolkits. UML diagrams

showed the interaction of modules, and layed out the development of simulation applica-

tions using Open-SESSAME. Code snippets showed specific examples of how to imple-

ment various simulation components that comprise an application. Finally, a discussion

of using Open-SESSAME with hardware and flight software or external programs was

presented.
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Chapter 7

Verification and Validation

This chapter presents the verification and validation of the Open-SESSAME Framework

and its components. The purpose and methods for performing the tests are given. Follow-

ing, the results from tests and comparisons are discussed as well as an overall summary

of the validity of Open-SESSAME.

7.1 Purpose

A verification and validation effort is required in order to assure the user and any clients

reviewing the validity of analysis results from the Open-SESSAME Framework. Veri-

fication of the software involves checking that the numerical output of the simulation

matches (or closely approximates) an accepted analytic solution, or output from other

verified software programs. Validation is demonstrating that the software solution meets

the purposes and requirements of the project. In the case of Open-SESSAME, the re-

quirements stated that the framework is to provide an extensible library of software tools

for analysing and modeling spacecraft.

The verification and validation of the software should serve as an assurance that the

software output can be trusted. Users may rely on the provided libraries being accurate

and then need only worry about their specific simulation problem. The software may

also be verified by inspecting the code, since it is provided in the framework package.



7.2 Methods 101

7.2 Methods

Three methods are used for verifying the Open-SESSAME framework:

1. Inspection of the software code to ensure that the implementation matches the

derived algorithms.

2. Comparison of the output to a closed-form analytic solution to the dynamics equa-

tions.

3. Comparison of the output to an industry standard software package using the same

or similar modeling parameters.

Inspection of the code has been performed by the developers to date, but is also left

to future users to verify and assure themselves that the code is implemented as doc-

umented. The code is written with verbose variable and function naming to assist in

white-box inspection. White-box inspection is a means of verification by a human man-

ually reading over the code to check the programs logic and operation. Furthermore, the

embedded documentation includes the mathematical algorithm, in symbolic form, that

is implemented in the function.

Simple equations of motion (assuming axisymmetric body or with a simple disturbance

force) have a closed-form solution. These solutions are evaluated at any arbitrary time

of the spacecraft simulation. The calculation from this solution is compared to the same

simulation parameters when the equations of motion are integrated numerically.

Finally, for simulations that are complex (contain many disturbances or have a non-

symmetric body), comparisons with verified programs is the easiest and fastest means of

verification. Industry standard spacecraft simulation packages, such as STK or FreeFlyer,

have documented verification, and have flight heritage to compare with the simulations.

A comparison is made by setting up these software packages with the same configuration

as an Open-SESSAME simulation application. The output is compared after propagating

both the Open-SESSAME and the application’s simulation.
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Table 7.1: Comparison of orbit simulation with closed-form solution without forces.

ri
0 [1131.34,−2282.343, 6672.423]T km

vi
0 [−5.64305, 4.30333, 2.42879]T km/s

t 2400 sec

Integrator RK-4(5), tol: 10× 10−9

Output

Running Time 0.59 sec

ri
Kep(t) [−4219.853, 4363.116,−3958.789]T km

vi
Kep(t) [3.689736,−1.91662,−6.112528]T km/s

ri
Sim(t) [−4219.752, 4363.029,−3958.766]T km

vi
Sim(t) [3.689865,−1.916734,−6.112511]T km/s

RMS error ∆rRMS = 3.1493× 10−5

∆vRMS = 6.95115× 10−5

7.3 Closed-Form Solution Results

7.3.1 Orbit Verification

In Section 4.3.3 we derived the equation for a closed-form solution of the orbit equation

known as Kepler’s Equation (Equation 4.55). By calculating the orbit state using this

closed-form solution and comparing to a numerical integration with Open-SESSAME, we

can verify the accuracy of the integration of a two-body point mass orbit simulation.

Table 7.1 shows the results from performing a short term (40 minutes) simulation of a

satellite with only two-body forces. The simulation results are numerically close to the

closed-form result with little required computation time. The tolerance of the integrator

can be decreased, or the order of the integrator increased to achieve better accuracy at

the cost of a higher computation time.

7.3.2 Attitude Verification

In Equations 3.48 and 3.51, the derivations of a closed-form solution for an axisymmetric

body was derived. These are useful for verifying simple cases of attitude simulation.

A time-varying torque is applied about an axisymmetric body. The closed-form and

integrated solutions are compared. The results are shown in Table 7.2, and demonstrate
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Table 7.2: Comparison of attitude simulation with closed-form solution with time-varying
torques.

ω0 [0.3,−0.4, 0.7]T rad/s

It 100 kg m2

I3 150 kg m2

g(t)
[
0.2 sin t −0.4 sin t 0

]T
Nm

t 300 sec

Integrator RK-4(5), tol: 10× 10−8

Output

ω(t)
[
−0.46134984 −0.194318263 0.7

]T
rad/s

ωSim

[
−0.46134984100 −0.193182629296 0.7

]T
rad/s

RMS error
√

(−1.15712× 10−9)2 + (2.942222× 10−9)2

= 3.165158× 10−9rad/s

that the implementation of attitude dynamics using quaternion and angular velocities is

accurate. Higher precision can be acheived by decreasing the tolerance of the variable step

integrator. Also, dynamics equations of other representations (i.e. Modified Rodriguez

Parameters, Angular Momentum) should be verified as necessary.

7.4 Software Comparison Results

Satellite ToolKit and FreeFlyer were chosen as the two baseline spacecraft simulation

packages to compare with Open-SESSAME. These packages are chosen because they are

the most mature, and have flight heritage. Furthemore, both STK and FreeFlyer are

considered the industry leaders in satellite modeling and analysis, and have easy to use

interfaces for setting up configurations that match Open-SESSAME. However, neither

program provides support for advanced attitude modeling that includes environmental

disturbance torques or control inputs.

Orbits were simulated independently to inspect their individual operation. Both short

term and long term simulations are presented, in simple and complex configurations.

Since neither of the benchmark programs contain the functionality necessary to model

coupled simulation, the verification of attitude dynamics will reside in the closed-form

comparison. The validation of Open-SESSAME described below demonstrates the func-
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Table 7.3: Comparison of simulations of a low-earth orbit

Parameter Value

Initial Orbit State r0 =
[
−2216.05436 −2837.09413 −6235.38291

]T
v0 =

[
6.938058 −5.419317 0

]T
Disturbances Two-Body Gravity

Integrator Runge-Kutta-Fehlberg 4(5)

Simulation Time 86,400 s

Output O-SESSAME STK FreeFlyer

Final Orbit State



813.3068066

9186.344286

13406.4852

−3.32870222

1.370725213

−1.678024353





813.238901

9186.370669

13406.4847

−3.328704

1.370709

−1.678049





813.2919879

9186.350424

13406.47774

−3.32870249

1.370721908

−1.678029149


Running Time 3 sec 1 sec 7 sec

RMS Error - 8.57× 10−5 1.86× 10−5

tionality of this coupled simulation.

7.4.1 Orbit Simulation

Low Earth Orbit

The simple modeling of a satellite in Low-Earth is shown in Table 7.4. The errors of

Open-SESSAME when compared to STK and FreeFlyer are favorable. Furthermore,

Open-SESSAME is faster than FreeFlyer. When performing a long-term integration,

as shown in Table 7.4, the error grows and computation takes much longer. It will be

necessary to optimize the Open-SESSAME application for use in long-term simulations

to cut down on run time.

Geostationary Orbit

A geostationary satellite has a slow, nearly constant angular velocity. Therefore, large and

constant integration stepsizes are sufficient for accurate simulation. Table 7.5 shows the
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Table 7.4: Comparison of simulations of a low-earth orbit over long-term

Parameter Value

Initial Orbit State r0 =
[
−2213.110462 −2839.391147 −6235.382907

]T
v0 =

[
6.943675 −5.412118 0

]T
Disturbances Two-Body Gravity

Intregrator Runge-Kutta-Fehlberg 4(5)

Simulation Time 20 days

Output O-SESSAME STK FreeFlyer

Final Orbit State



5541.623013

−6308.090106

−2716.871416

5.55366187

−0.602634833

5.090185196





5543.012599

−6308.239404

−2715.59583

5.552857

−0.601718

5.090581





5542.078932

−6308.138143

−2716.45159

5.55339773

−0.602332835

5.090316517


Running Time 45 sec 4 sec 4 sec

RMS Error - 1.62× 10−3 5.34× 10−4

output from an Open-SESSAME simulation of a geostationary satellite for one simulation

day. The computation was relatively fast with little error when compared to STK and

FreeFlyer.

High Eccentricity Orbit

The low-earth orbit and geosynchronous simulations modeled a satellite at a nearly con-

stant angular velocity because the orbit is circular, or near circular. However, it is useful

to verify the operation of Open-SESSAME with a satellite that experiences large velocity

changes over an orbit. This case can be simulated with an high eccentricity orbit. At

periapsis, the lowest point of the orbit, the satellite has a high velocity, and at apoap-

sis, the farthest point, the satellite has a low velocity. During periapsis passage, the

spacecraft has an increased velocity, which can cause simulation errors due to the large

distances in short time periods. Table 7.6 shows the results of this simulation. Figure

7.1 is a plot of the position RMS error versus the altitude of the spacecraft. The error

is greater at a lower altitude, corresponding to a higher velocity. This error could be

reduced by decreasing the tolerance. Also, the error is low at a low altitude at the be-

ginning of the simulation since both simulations were given the same initial conditions.



7.5 Validation 106

Table 7.5: Comparison of simulations of a geostationary orbit

Parameter Value

Initial Orbit State r0 =
[
14580.17548 39563.05959 0

]T
v0 =

[
−2.884984 1.063203 0

]T
Disturbances Two-Body Gravity

Integrator Runge-Kutta-Fehlberg 4(5)

Simulation Time 86,400 s

Output O-SESSAME STK FreeFlyer

Final Orbit State



13897.40111

39808.0323

0

−2.9028477

1.0134143

0





13897.45665

39808.01301

0

−2.902846

1.013419

0





13897.40079

39808.03247

0

−2.902847711

1.013414275

0


Running Time 3.5 sec 1 sec 2 sec

RMS Error - 6.16× 10−6 3.37× 10−8

Open-SESSAME agrees closely with STK, both of which have a fast calculation time.

FreeFlyer, however, has a slow calculation time and greater error when compared to

Open-SESSAME and STK.

7.5 Validation

While the Open-SESSAME framework is verified by comparing the accurate numerical

output to the closed-form solution and other software packages, it is necessary to validate

the framework design. Open-SESSAME should make simulation of spacecraft easier for

users, rather than imposing unnecessary complications.

7.5.1 Simulation Validation

The Virginia Tech HokieSat, a nanosatellite that is being built by students to launch as a

part of the Ionospheric Nanosatellite Formation (ION-F) program, is currently modeled

in software using a monolithic simulation function that is tied in closely with the flight

code. When a change in the simulation parameters is necessary, software developers on
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Figure 7.1: High Eccentricity Simulation Error. The altitude of the spacecraft is plotted against
the position RMS error at that altitude.
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Table 7.6: Comparison of simulations of a high eccentricity orbit

Parameter Value

Initial Orbit State r0 =
[
7500 0 0

]T
v0 =

[
0 6.819333903 6.819333903

]T
Disturbances Two-Body Gravity

Integrator Runge-Kutta-Fehlberg 4(5)

Simulation Time 20 days

Output O-SESSAME STK FreeFlyer

Final Orbit State



−46724.94751

−8276.177337

−8276.177337

1.339061791

−0.85741544

−0.85741544





−46727.35881

−8275.048124

−8275.048124

1.338824

−0.857447

−0.857447





−46713.96349

−8283.620519

−8283.620519

1.340490327

−0.857151194

−0.857151194


Running Time 15 sec 4 sec 48 sec

RMS Error - 2.72× 10−4 1.73× 10−3

the project are required to modify hard-coded values in the flight code. Furthermore,

the software is poorly documented, and subject to errors. To add functionality to the

HokieSat simulation, the new algorithms must be implemented and tied in without dis-

turbing the existing simulation. When software development is complete, the simulation

must be extracted from the flight code.

The Open-SESSAME validation effort demonstrates the benefits of this new framework

by developing a simulation application for use in testing the HokieSat flight code and

hardware. The application uses Open-SESSAME framework components to provide an

easy to use simulation that is easily configurable for testing the flight software in various

operating conditions. The simulation is also transparent to the developer and separate

from the flight code.

7.5.2 HokieSat Simulation Application

The ION-F mission requires that HokieSat fly at a relatively low altitude, approximately

400 km above the Earth. Atmospheric drag will be an important disturbance force that

directly affects the operational lifetime of the satellite. However, the current simulator
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Table 7.7: Summary of simulation components for HokieSat using Open-SESSAME

Attitude Orbit

State Quaternion, Angular Velocity Position, Velocity

Model Euler Two-Body Point Masses

Environment Gravity-Gradient Magnetic Field

Integrators Runge-Kutta-Fehlberg 4(5) Runge-Kutta-Fehlberg 4(5)

Tol: 10× 10−6, Step: 0.01 ⇒ 0.25 Tol: 10× 10−6, Step: 0.01 ⇒ 0.25

Propagator Weakly Coupled Uncoupled

does not model atmospheric drag. The Open-SESSAME based simulation application

will not include atmospheric density at first, in order to verify the switch-over from the

original simulator to the new simulator, but the new application includes support for

increasingly complex atmosphere models.

HokieSat uses magnetic torque coils for attitude control, and a magnetometer to measure

the Earth’s local magnetic field. Therefore, the simulation should include a magnetic field

model of the Earth. For a first run, a simple tilted dipole model is sufficient. As the

flight software program progresses, a higher-order model of the magnetic field is desired.

The new simulator also needs to include gravity-gradient disturbance torque, and allow

for force and torque inputs from the orbit and attitude controllers respectively. In order to

separate the flight code from the simulation code, a communications socket is established.

The simulator receives requests for attitude and orbit, or setting of control torques from

the flight code. The simulator is propagating in real-time, or some specified factor of

real-time. As requests are made, or parameters are set, the simulator updates its data

and continues simulating. This design concept is layed out in Section 6.2.4.

To summarize, a simulation for HokieSat includes the components presented out in Table

7.7. Initial conditions are parsed from a file to allow developers and student engineers

to quickly change the operating parameters of the simulation without having to modify

and recompile the Open-SESSAME simulation code.

7.5.3 HokieSat Simulation Results

The code for the main function of the HokieSat simulation application built using Open-

SESSAME is included in Appendix A. Figures 7.2 and 7.3 are output plots of the orbit

and attitude of HokieSat with no control-input. Graphs like these can be output on a
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regular basis to update the user as to the status of the simulation as it is operating.

Figure 7.2: Example Gnuplot output of HokieSat orbit position.

Another benefit of developing this Open-SESSAME simulation server is that the ap-

plication can be used for other engineering projects. For example, the Space Systems

Simulation Laboratory is developing several spacecraft simulation tables to model at-

titude dynamics using various hardware and software control techniques. It would be

useful to model the physical space environment and propagate the orbit of the spacecraft

to provide to the control and sensing algorithms to increase the scope of the DSACSS

project. The Open-SESSAME simulation server could be used with the DSACSS tables

by providing a new configuration file containing the desired modeling characteristics of

a DSACSS simulation. Also, any desired sensor stubs would be added to the spacecraft

table computers to interface to Open-SESSAME. Therefore, the DSACSS project gains

the use of a full-featured, configurable simulation server with little effort required by the

team.
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Figure 7.3: Example Gnuplot output of HokieSat attitude.

7.6 Summary

This chapter demonstrated the validity of the dynamics and modeling algorithms used

in Open-SESSAME when compared against closed-form analytic solutions as well as

agasint numerical integration using industry accepted spacecraft simulation packages.

Furthermore, in some of the test cases Open-SESSAME was demonstrated to be faster

than the simulation packages. Validation of Open-SESSAME involved implementing a

simulation for HokieSat which is easier to use and understand for the HokieSat team

of engineering. Open-SESSAME also provides enhanced functionality and the ability to

improve the simulation server as requirements change.
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Chapter 8

Conclusions

An extensible spacecraft simulation and modeling framework was developed and imple-

mented. The software has been released as open-source and will continue to mature and

grow. Results are summarized below, along with recommendations for future work with

Open-SESSAME.

8.1 Summary

The need for an open-source, freely available satellite modeling tool was presented. The

requirements called for developing the software the is understandable by an engineer

or student who has some programming experience and wants to analyze and model a

spacecraft, or test flight hardware and software.

The background concepts that form the underlying algorithms were developed and pre-

sented. A software achitecture was developed that incorporated these algorithms while

also allowing future users the ability to add new algorithms with little or no required

changes to the existing code. Furthermore, the architecture also allows for multiple con-

figurations based on the needs of the users, as well as allowing the software libraries to

be extracted for use in flight code and other analysis ventures.

The framework architecture was implemented in software along with documentation of

the implementation, interface, and usage. This complete package is made available to

the public via a popular internet repository for open-source projects. Code may be

downloaded, or new code uploaded through this repository, which allows the software to

remain free and continue to grow.
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A verification effort demonstrated the correct implementation of the mathematical simu-

lation algorithms. The Open-SESSAME demonstration application output matches that

of analytical solutions as well as numerical solutions from industry accepted commer-

cial satellite simulation packages. The documentation also includes the documentation

and references of the algorithms implemented in the software, giving users the ability

to independently verify and validate the operation of the Open-SESSAME libraries and

toolkits.

8.2 Recommended Future Work

The Open-SESSAME framework is in a usable state for developing simple to moder-

ate applications of orbit and attitude simulations. The code also includes the ability

to provide a simulation server to hardware and external software that are not part of

Open-SESSAME. Future work should begin with adding more models, environmental

disturbances, and math algorithms (i.e. integration and interpolation). These algo-

rithms can be implemented as individual components as necessary and added to the

public repository.

Longer term goals should include developing automated unit testing for maintaining

verification of the framework components. As new models are added, or existing code

is optimized, the automated testing would alert the developer to any introduced errors.

This verification goes with the future need to optimize the operation of the code to speed

up calculation.

A future goal could also be to develop some form of better visualization using any num-

ber of existing open-source programs like Celestia, Spacecraft Modeler, or GeomView.

These visualization add-ons would display a real-time, or postprocessing display of the

spacecraft’s attitude and orbit.
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Appendix A

HokieSat Simulation Source Code

A.1 HokieSatSimulation.h

//////////////////////////////////////////////////////////////////////////////////////////////////

/*! \file HokieSatSimulation.h

* \brief Include files and function prototypes for HokieSat attitude simulation example.

* \author $Author: nilspace $

* \version $Revision: 1.2 $

* \date $Date: 2003/06/12 23:05:55 $

*//////////////////////////////////////////////////////////////////////////////////////////////////

// Standard includes

#include "Matrix.h"

#include "Rotation.h"

// Dynamics includes

#include "CombinedNumericPropagator.h"

#include "RungeKuttaFehlbergIntegrator.h"

// Orbit Includes

#include "Orbit.h"

#include "OrbitState.h"

#include "orbitmodels/TwoBodyDynamics.h"

#include "orbitstaterep/PositionVelocity.h"
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#include "orbitframes/OrbitFrameIJK.h"

// Attitude includes

#include "Attitude.h"

#include "AttitudeState.h"

#include "AttitudeModels/QuaternionAngVelDynamics.h"

// Environment Includes

#include "CentralBody/EarthCentralBody.h"

#include "CentralBody/Models/TiltedDipoleMagneticModel.h"

#include "Disturbances/GravityFunctions.h"

#include "Disturbances/SimpleAerodynamicDisturbances.h"

// Utility Includes

#include "Plot.h"

#include "MathUtils.h"

using namespace O_SESSAME;

/** @brief Sets up a combined numeric propagator, RK4(5) integrator and tolerances. */

NumericPropagator* SetupPropagator();

/** @brief Creates an Earth environment with point-mass,

* two-body gravity, gravity-gradient torque,

* and a tilted-dipole magnetic field model. */

Environment* SetupEnvironment(Attitude* pSatAttitude);

/** @brief Creates an initial orbit read in from a file. */

Orbit* SetupOrbit();

/** @brief Creates an initial attitude read in from a file. */

Attitude* SetupAttitude();

/** @brief HokieSat magnetic controller algorithm prototype.

*/

Vector ControlTorques(Matrix CurrentAttState,

Matrix DesAttState,

double epoch,

double count);
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A.2 HokieSatSimulation.cpp

//////////////////////////////////////////////////////////////////////////////////////////////////

/*! \file HokieSatSimulation.cpp

* \brief Demonstrates the use of Open-SESSAME for simulating

* HokieSat.

* \author $Author: nilspace $

* \version $Revision: 1.4 $

* \date $Date: 2003/06/12 23:05:55 $

*//////////////////////////////////////////////////////////////////////////////////////////////////

/*!

*/

//////////////////////////////////////////////////////////////////////////////////////////////////

#include "HokieSatSimulation.h"

/** @brief Main operating function for HokieSat simulation.

* @author Andrew Turner

*

* Breaks down all object initializations into seperate functions.

*/

int main()

{

Orbit* pHokiesatOrbit = SetupOrbit();

Attitude* pHokiesatAttitude = SetupAttitude();

// Setup Propagator

NumericPropagator* pHokiesatPropagator = SetupPropagator();

pHokiesatOrbit->SetPropagator(pHokiesatPropagator);

pHokiesatAttitude->SetPropagator(pHokiesatPropagator);

// Setup external environment

Environment* pEarthEnv = SetupEnvironment(pHokiesatAttitude);

pHokiesatOrbit->SetEnvironment(pEarthEnv);

pHokiesatAttitude->SetEnvironment(pEarthEnv);

// Integration Times

double propTime = 20; // mins
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cout << "Propagation time (mins): " << flush;

cin >> propTime;

double propStep = 60; // s

cout << "Propagation step (secs): " << flush;

cin >> propStep;

vector<ssfTime> integrationTimes;

ssfTime begin(0);

ssfTime end(begin + propStep);

integrationTimes.push_back(begin);

integrationTimes.push_back(end);

// Output the current state properties

cout << "PropTime = " << begin.GetSeconds() << " s -> "

<< end.GetSeconds()

<< " s" << endl;

cout << "Orbit State: " << ~pHokiesatOrbit->

GetStateObject().GetStateRepresentation()->

GetPositionVelocity();

cout << "Attitude State: " << ~pHokiesatAttitude->

GetStateObject().GetState() << endl;

// Integrate over the desired time interval

tick();

pHokiesatPropagator->Propagate(integrationTimes, pHokiesatOrbit->

GetStateObject().GetStateRepresentation()->

GetPositionVelocity(), pHokiesatAttitude->

GetStateObject().GetState());

for (int ii = 0; ii < propTime*60/propStep ; ++ii)

{

// Integrate again

integrationTimes[0] = integrationTimes[1];

integrationTimes[1] = integrationTimes[0] + propStep;

//cout << integrationTimes[0] << " -> " <<

integrationTimes[1] << endl;

pHokiesatPropagator->Propagate(integrationTimes,

pHokiesatOrbit->

GetStateObject().GetStateRepresentation()->
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GetPositionVelocity(), pHokiesatAttitude->

GetStateObject().GetState());

}

cout << endl;

ssfSeconds calcTime = tock();

cout << "finished propagating " << propTime*60

<< " sim-seconds in " << calcTime

<< " real-seconds." << endl;

// Plot the state history

Matrix orbitHistory =

pHokiesatOrbit->GetHistoryObject().GetHistory();

Matrix orbitPlotting =

orbitHistory(_,_(MatrixIndexBase+1,MatrixIndexBase+3));

Matrix attitudeHistory =

pHokiesatAttitude->GetHistoryObject().GetHistory();

Matrix attitudePlotting =

attitudeHistory(_,_(MatrixIndexBase,MatrixIndexBase+4));

Plot3D(orbitPlotting);

Plot2D(attitudePlotting);

// Store the output to file

ofstream ofile;

ofile.open("OrbitHistory.dat");

ofile << pHokiesatOrbit->GetHistoryObject().GetHistory();

ofile.close();

ofile.open("AttitudeHistory.dat");

ofile << pHokiesatAttitude->GetHistoryObject().GetHistory();

ofile.close();

return 0;

}

// *************************

// ****** ENVIRONMENT ******

// *************************
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Environment* SetupEnvironment(Attitude* pSatAttitude)

{

// ENVIRONMENT TESTING

Environment* pEarthEnv = new Environment;

EarthCentralBody *pCBEarth = new EarthCentralBody;

pEarthEnv->SetCentralBody(pCBEarth);

// Add Gravity force function

EnvFunction TwoBodyGravity(&GravityForceFunction);

double *mu = new double(pCBEarth->GetGravitationalParameter());

TwoBodyGravity.AddParameter(reinterpret_cast<void*>(mu), 1);

pEarthEnv->AddForceFunction(TwoBodyGravity);

cout << "Add Drag? (y or n): " << flush;

char answer;

cin >> answer;

if(answer == ’y’)

{

// Add Drag Force Function

EnvFunction DragForce(&SimpleAerodynamicDragForce);

double *BC = new double(2);

DragForce.AddParameter(reinterpret_cast<void*>(BC), 1);

double *rho = new double(1.13 * pow(static_cast<double>(10),

static_cast<double>(-12))); // kg/m^3

DragForce.AddParameter(reinterpret_cast<void*>(rho), 2);

pEarthEnv->AddForceFunction(DragForce);

}

// Add Gravity torque function

EnvFunction GGTorque(&GravityGradientTorque);

Matrix *MOI = new Matrix(pSatAttitude->GetParameters()(_(1,3),_));

GGTorque.AddParameter(reinterpret_cast<void*>(MOI), 1);

GGTorque.AddParameter(reinterpret_cast<void*>(mu), 2);

pEarthEnv->AddTorqueFunction(GGTorque);

// Assign Magnetic Model

pCBEarth->SetMagneticModel(new TiltedDipoleMagneticModel);

return pEarthEnv;
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}

// *************************

// ****** PROPAGATOR *******

// *************************

NumericPropagator* SetupPropagator()

{

CombinedNumericPropagator* pSatProp = new CombinedNumericPropagator;

// Create & setup the integator

// Setup an integrator and any special parameters

RungeKuttaFehlbergIntegrator* orbitIntegrator =

new RungeKuttaFehlbergIntegrator;

RungeKuttaFehlbergIntegrator* attitudeIntegrator =

new RungeKuttaFehlbergIntegrator;

orbitIntegrator->SetTolerance(pow(10.,-7.));

orbitIntegrator->SetStepSizes(0.01, 300);

pSatProp->SetOrbitIntegrator(orbitIntegrator);

attitudeIntegrator->SetTolerance(pow(10.,-7.));

attitudeIntegrator->SetStepSizes(0.01, 5);

pSatProp->SetAttitudeIntegrator(attitudeIntegrator);

return pSatProp;

}

// *************************

// ********* ORBIT *********

// *************************

Orbit* SetupOrbit()

{

Orbit* pSatOrbit = new Orbit;

// Create & initialize the orbit

OrbitState SatOrbitState;

SatOrbitState.SetStateRepresentation(new PositionVelocity);

SatOrbitState.SetOrbitFrame(new OrbitFrameIJK);

Vector initPV(6);
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// Space station

initPV(VectorIndexBase+0) = -5776.6; // km

initPV(VectorIndexBase+1) = -157; // km

initPV(VectorIndexBase+2) = 3496.9; // km

initPV(VectorIndexBase+3) = -2.595; // km/s

initPV(VectorIndexBase+4) = -5.651; // km/s

initPV(VectorIndexBase+5) = -4.513; // km/s

SatOrbitState.SetState(initPV);

pSatOrbit->SetStateObject(SatOrbitState);

pSatOrbit->SetDynamicsEq(&TwoBodyDynamics);

pSatOrbit->SetStateConversion(&PositionVelocityConvFunc);

return pSatOrbit;

}

// *************************

// ******* ATTITUDE ********

// *************************

Attitude* SetupAttitude()

{

Attitude* pSatAttitude = new Attitude;

AttitudeState SatAttState;

SatAttState.SetRotation(Rotation(Quaternion(0,0,0,1)));

Vector initAngVelVector(3);

initAngVelVector(1) = 0;

SatAttState.SetAngularVelocity(initAngVelVector);

pSatAttitude->SetStateObject(SatAttState);

pSatAttitude->SetDynamicsEq(&AttituteDynamics_QuaternionAngVel);

pSatAttitude->SetStateConversion(&QuaternionAngVelConvFunc);

// Create the matrix of parameters needed for the RHS

Matrix MOI(3,3);

MOI(1,1) = 0.4084; MOI(1,2) = 0.0046; MOI(1,3) = 0.0;

MOI(2,1) = 0.0046; MOI(2,2) = 0.3802; MOI(2,3) = 0.0;
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MOI(3,1) = 0.0; MOI(3,2) = 0.0; MOI(3,3) = 0.4530;

MOI = eye(3);

MOI(1,1) = 2; MOI(2,2) = 2; MOI(3,3) = 10;

Matrix params(6,3);

params(_(1,3),_) = MOI;

params(_(4,6),_) = MOI.inverse();

pSatAttitude->SetParameters(params);

return pSatAttitude;

}

// Do not change the comments below - they will be added automatically by CVS

/**********************************************************

* $Log: HokieSatSimulation.cpp,v $

* Revision 1.4 2003/06/12 23:05:55 nilspace

* Works.

*

* Revision 1.3 2003/06/12 21:01:48 nilspace

* Fixed GG torque MOI parameter.

*

* Revision 1.2 2003/06/12 20:48:10 nilspace

* Asks user for times.

*

* Revision 1.1 2003/06/12 18:06:06 nilspace

* Initial submission.

*

* Revision 1.4 2003/05/27 17:47:13 nilspace

* Updated example to have seperate orbit & attitude integrators.

*

* Revision 1.3 2003/05/20 19:24:43 nilspace

* Updated.

*

* Revision 1.2 2003/05/13 18:57:32 nilspace

* Clened up to work with new Propagators.

*
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* Revision 1.1 2003/05/01 02:42:47 nilspace

* New propagation test file.

*

*

************************************************************/
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