
Open-Source, Extensible Spacecraft Simulation 
And Modeling Environment

A tool for use by engineers and students

Open-SESSAME
Framework



• Purpose of presentation

Introduce the user to the concepts, design, and usage of the Open-SESSAME 
Framework.

• Outline

• Goals

• Framework Architecture

• Using the Framework

• Coding Refresher

• Rotation Kinematics Example

• Attitude Integration Example

• Suggested Reading

Introduction



• Provide a framework for developing 
simulation applications

• Includes the tools necessary for analyzing 
spacecraft and orbits

• Extensible by the user for specific problem 
domains

Goals of Open-SESSAME



• Each block is a module 
or “class”

• Solid arrows denote 
“has-a” relationship 
(composition)

• Open arrows denote “is-
a” relationship 
(inheritance)

Framework Architecture

Ex: Rotation has-a Quaternion, 
which is-a Vector



• Because Open-SESSAME is a framework, it 
is not a stand-alone application, but a 
collection of modules that can be combined 
to build an application

• The problem domain is defined by the user, 
and functionality is added as necessary

• Missing functionality can be added by 
implementing and attaching to an extension 
point

Using the Framework



• Functions: void myFunction(const double& _inVar);
• returns a void
• takes a double as a parameter
• const ...& specifies that is a constant reference. This acts like a normal 

variable, but because it is passing just a reference and not a copy, it is 
faster at runtime. The “_” is just a coding name convention. 

• Classes
• Have public Member Functions which perform operations on private 

Data Members. Each time there is an object of a class created, it is an 
instance.

• Act as objects, which have data and can be operated on: A Car class has 
a MyAudiTT  instance, which has member functions GetMileage() and 
SetSpeed(const double& _newSpeed), with data members 
DistanceType m_Mileage and double m_SpeedMPH.

• Call-back functions
• Setting a pointer to a function to be evaluated later
• Used for specifying disturbance force functions and dynamics equations
• Type created that acts as an object: 

MyAudiTT.SetSpeedFunction(&SetSpeed)

Coding Refresher (C++)



• Attitude kinematics have several common 
representations: Direction Cosine Matrix, 
Euler Axis & Angle, Quaternion, Modified 
Rodriguez Parameters, and Euler Angles.

• A coordinate frame transformation is 
represented as an abstract Rotation, which 
can be any type of common representation. 

Rotation Kinematics

Quaternion myQuat(0,0.1,0.2,-0.3);
Rotation myRot1(myQuat);
cout << myRot1.GetDCM();



• Setup the initial AttitudeState
    AttitudeState myAttitudeState;
    myAttitudeState.SetRotation(Rotation(Quaternion(0,0,0,1)));
    Vector initAngVelVector(3); initAngVelVector(1) = 0.1;
    myAttitudeState.SetAngularVelocity(initAngVelVector);

• Setup the Integrator
    RungeKuttaIntegrator myIntegrator; 
    myIntegrator.SetNumSteps(1000);
    vector<ssfTime> integrationTimes;
    ssfTime begin(0);   ssfTime end(begin + 20);
    integrationTimes.push_back(begin); integrationTimes.push_back(end);

• Integrate (see testAttitudeIntegration.cpp for full example)

    Matrix history = myIntegrator.Integrate(
                            integrationTimes, // seconds
                            &AttituteDynamics, 
                            myAttitudeState.GetState(),
                            nonOrbit, nonAttitude,
                            Parameters,
                            AttitudeForcesFunctor );

Attitude Integration



• Spacecraft Dynamics

• David A. Vallado, Fundamentals of Astrodynamics and Applications. 
McGraw-Hill, New York, NY, 1997.

• James R. Wertz (ed.), Spacecraft Attitude Determination and Control. 
Reidel Publishing, Hingham, MA, 1978.

• Programming

• J.P. Cohoon, J.W. Davidson. C++ Program Design: An Introduction to 
Programming and Object-Oriented Design. McGraw-Hill, Boston, MA, 
2nd Edition, 1999.

• B. Stroustrup. The C++ Programming Language. Addison-Wesley, 
Boston, MA, 3rd Edition, 1997.

Suggested Reading

[1] B. Stroustrup. The C++ Programming Language. Addison-Wesley, Boston, MA, 3rd edition, 1997.


